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ABSTRACT 
 
 
The first purpose of this thesis is to implement an efficient Cross Ambiguity 

Function (CAF) algorithm to compute the Time Difference of Arrival (TDOA) and 

Frequency Difference of Arrival (FDOA) between two sampled signals.  Two CAF-

related MATLAB functions were written and analyzed.  One implements a “coarse” 

mode and a “fine” mode to accurately compute the TDOA and FDOA.  The second plots 

different views of the resulting three-dimensional CAF surface. 

The second purpose is to develop a program to generate geometry-specific 

signals.  Some software packages can artificially embed constant TDOAs and FDOAs 

between two signals.  In real-world emitter-collector geometries (one emitter and two 

separate collectors), however, movement of the emitter and/or collectors causes time-

varying TDOAs and FDOAs.  A MATLAB function was written to generate pairs of 

Binary-Phase-Shift-Keying signals according to user-defined signal parameters and 

Cartesian geometries.  The resulting signal pairs have realistic TDOAs and FDOAs that 

vary with time according to geometry and relative motion. 

Several signal pairs with different geometries are generated and input into the 

CAF functions, and the results are compared with theoretical TDOA and FDOA 

calculations.  Finally, signals with low signal-to-noise ratios are generated to evaluate the 

CAF’s ability to find Low Probability of Detection signals. 
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EXECUTIVE SUMMARY 
 
 

The location of radio frequency transmitters is critical to numerous applications.  

Many geolocation methods utilize the Time Difference of Arrival (TDOA) and 

Frequency Difference of Arrival (FDOA) between two receivers collecting the same 

transmission.  One method of computing the TDOA and FDOA jointly is the Cross 

Ambiguity Function (CAF).  In the discrete, sampled-time case, it is defined 

mathematically as: 

1 2*
1 2

0
( , ) ( ) ( )

knN j
N

n
CAF k s n s n e

π
τ

− −

=
= +∑ τ        (1)  

where  and  are sampled signals in analytic signal format, N is the total number of 

samples in  and , τ is time delay in samples, and 

1s 2s

1s 2s k
N

 is the frequency difference in 

digital frequency, or fraction of the sampling frequency.  The magnitude of the CAF, or 

( , kτ )CAF , will peak when τ and k
N

 are equal to the embedded TDOA and FDOA, 

respectively, between the two signals  and .  The first goal of this thesis was to 

implement Equation (1) to efficiently compute the TDOA and FDOA between two 

sampled signals. 

1s 2s

 There are three main ways to implement Equation (1) directly.  The summation 

can be explicitly computed, or the terms can be rearranged in two different ways to force 

Equation (1) into the form of either a Discrete Fourier Transform or a cross-correlation.  

The three methods are evaluated and their computational complexities (in terms of 

floating point operations) are compared.  The result is that even for a relatively small 

number of possible TDOAs and FDOAs, all three methods of direct computation are too 

costly.  A better approach is to split the computations into two modes:  “coarse” and 

“fine.”  The coarse mode produces a rough estimation of TDOA and FDOA by dividing 

the signals into smaller blocks for processing, which reduces the overall processing 

burden.  The coarse estimates are then sent to the fine mode for refined computation.  

 xv



Because the fine mode computes the CAF for a small number of possible TDOAs and 

FDOAs (i.e., for a few values surrounding the coarse estimates), the CAF can be 

implemented directly.  From the analysis of the three methods described above, the 

explicit summation method is the most efficient.  This approach was used to develop a 

MATLAB function, CAF.m, that takes two signal vectors and computes the associated 

TDOA and FDOA.  Another program, CAF_peak.m, displays the resulting CAF surface 

in both 3-D and 2-D.  Several pairs of signals with constant TDOAs and FDOAs were 

input into the programs to ensure that they worked. 

 The second goal of the thesis was to develop a MATLAB program that generates 

realistic signal sets.  Some commercial software packages have the ability to embed only 

constant TDOAs and FDOAs between two signals.  In real-world systems, however, the 

relative motion between emitters and collectors causes time-varying TDOAs and FDOAs.  

The program sig_gen.m was developed so that a user can define signal parameters 

(carrier frequency, sampling frequency, data rate, etc.) and a specific emitter-collector 

geometry in Cartesian, three-dimensional, coordinates.  The generated signal sets 

represent realistic signals that have been transmitted from a system with the 

characteristics defined by the user.  In this manner, one can use sig_gen.m to simulate 

real-world systems. 

 As an example, consider a ground-based transmitter with a pair of satellite 

collectors in a Low Earth Orbit (LEO) of 1000 kilometers.  Figure (1) shows the 

MATLAB command window after sig_gen.m generates a pair of signals with this 

geometry.  The theoretical values for TDOA and FDOA are shown at the bottom of the 

figure.  Figure (2) shows the MATLAB command window after running CAF.m on the 

generated signals.  Notice that the computed values of TDOA and FDOA, shown in 

Figure (2), compare favorably with the theoretical predictions in Figure (1).  Finally, 

Figure (3) shows the 3-D plot of the resulting CAF surface and Figure (4) shows 2-D 

views that result from slices through the surface along the TDOA and FDOA axes.  It is 

important to note that the CAF surface is for display only, since its peak occurs at un-

interpolated values of TDOA and FDOA.  This reduces the processing burden of creating 

 xvi



 
Figure 1.  Example Signal Set (LEO Satellite Collectors & Ground-Based Emitter). 

 

 xvii
Figure 2.  CAF.m Results (LEO Satellite Collectors & Ground-Based Emitter). 



 
Figure 3.  3-D CAF Surface (LEO Satellite Collectors & Ground-Based Emitter). 

 
 

 
Figure 4.  2-D Cuts Through CAF Surface (LEO Satellite Collectors & Ground Emitter). 
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the surface.  As a result, the TDOA & FDOA shown in Figures (3) and (4) do not 

correspond exactly to the more precise values computed by CAF.m and displayed in 

Figure (2). 

A variety of other signal sets were also generated to ensure that the programs 

developed for this thesis operated correctly.  The end result is that the goals of the thesis 

were clearly met.  The CAF and signal generation software developed for this thesis 

provide a new capability for users to simulate real-world systems, generate realistic 

BPSK signals, and efficiently compute TDOAs and FDOAs – all on a standard desktop 

PC.  

 xix
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I. INTRODUCTION  
Equation Section 1 

 
A. BACKGROUND  

Accurate geolocation of radio frequency transmitters is critical to many 

applications, including Global Positioning and pinpointing the locations of hostile radar 

systems.  Many geolocation methods utilize the Time Difference of Arrival (TDOA) and 

Frequency Difference of Arrival (FDOA) between two receivers collecting the same 

transmission.  If there is no FDOA between two receivers (i.e., the difference in the two 

Dopplers is zero), then simple cross-correlation computations can uncover the resulting 

TDOA.  However, in the more likely cases where relative motion exists between 

collectors and transmitters, the non-zero FDOAs preclude use of cross-correlation 

techniques.  In these cases, TDOA and FDOA measurements must be calculated jointly.  

One way to accomplish this is to utilize the Cross Ambiguity Function (CAF). 

There exist many signal generation software packages that can produce myriad 

signal types (Phase Shift Keying, Amplitude Shift Keying, etc.) with user-defined 

parameters such as carrier frequency, sampling frequency, symbol rate, and signal-to-

noise ratio.  Some of these packages can also embed time delays and frequency offsets 

between two signals.  The limitation in these programs is that the embedded TDOAs and 

FDOAs are constant.  This is not helpful in modeling real-world situations where relative 

motion between emitters and collectors causes a continuous change in geometry, and 

therefore leads to TDOAs and FDOAs that are time-varying.   

 

B. OBJECTIVES 

1 

The main objective of this thesis was to develop the MATLAB code in Appendix 

A, which takes two sampled signals (i.e., transmissions from a single emitter received by 

two separate collectors) and estimates the associated TDOA and FDOA using CAF 

computations.  In addition to TDOA and FDOA estimation, the CAF can also be used to 

detect signals.  This feature is useful in evaluating the effectiveness of so-called Low 

Probability of Dectection (LPD) signals.  The CAF is used in many real-world systems 

that have vast computer resources with which to do the computations.  This software, 

however, brings the ability to perform CAF computations to the standard desktop PC. 



The secondary focus of this thesis was to develop the MATLAB code in 

Appendix B, which generates pairs of sampled signals based upon signal parameters and 

emitter-collector geometries defined by the user.  This will allow users to model any real-

world system by creating signal sets that could be transmitted and collected by emitters 

and collectors in an associated geometry. 

 

C. RELATED WORK 
 There exist numerous technical papers and articles on the CAF, and on algorithms 

that can be used to compute it.  The vast majority of these papers refer back to [1], which 

is generally regarded as the seminal work on CAF processing techniques.  Stein’s paper, 

along with many others, describes an algorithm for efficient computation of the CAF.  A 

significant search for references that deal specifically with implementing CAF algorithms 

turned up nothing.  Searching the worldwide web for CAF programs uncovered a short 

MATLAB function that is part of a collection of free programs called the Time 

Frequency Toolbox for MATLAB [2].  Analysis of that CAF program, however, showed 

that it was rudimentary and incapable of processing signals that had greater than about 

256 data elements.  The CAF programs created as part of this thesis (Appendix A) are 

capable of handling signals with as many as 524,288 elements.   The main program 

computes the CAF using the coarse mode algorithm described in [1], and a fine mode 

algorithm that was selected based upon an analysis of computational complexity. 

 As far as geometry-specific signal generation is concerned, there appeared to be 

no body of knowledge from which to draw upon.  As mentioned in the previous section, 

there are some commercial software packages, including one from Statistical Signal 

Processing, Inc., that can embed constant TDOAs and FDOAs between two signals.  The 

signal generation software developed for this thesis (Appendix B), however, allows a user 

to generate signals whose TDOAs and FDOAs, be they constant or time-varying, are 

consistent with the defined parameters and emitter-collector geometries.  The algorithm 

used to generate these signals was developed and implemented through extensive trial 

and error by the author and his thesis advisor. 

 

2 



D. THESIS ORGANIZATION 
The chapters of this thesis devoted to the CAF are organized as follows:  Chapter 

II provides background information about the CAF, including basic definitions and 

requirements of the CAF’s input signals.  Chapter III evaluates the computational 

complexity (or cost) of three different ways in which the basic CAF can be directly 

implemented.  Also, the code in Appendix A is thoroughly analyzed to describe the 

specific approach taken to implement the CAF.  Finally, graphical and numerical results 

are displayed and discussed for several example signal sets that were input into the 

Appendix A programs. 

There are two chapters devoted to geometry-specific signal generation.  Chapter 

IV provides background information about Binary-Phase-Shift-Keying (BPSK) signals 

and the type of emitter-collector geometry that is modeled by the code.  Also, equations 

that can be used to manually calculate TDOAs and FDOAs for known emitter-collector 

geometries are presented.  Chapter V describes in detail the code in Appendix B, 

analyzing the technique used to create the signal sets.  Also, several example sets of 

signals are generated, with their theoretical TDOAs and FDOAs calculated and compared 

to the actual values computed by the CAF code in Appendix A.  Various cases are 

explored, including geometries that give different combinations of constant and time-

varying TDOAs and FDOAs.  Also, signal sets from some realistic geometries (e.g., 

satellite and airborne collectors) are analyzed and displayed.  Finally, the detectability of 

LPD emitters is explored by showing how CAF results are affected by increasing the 

noise level.  Chapter VI summarizes the findings of this thesis, and also discusses a 

number of extensions to this research that could be taken on by future students.  
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II. THE CROSS AMBIGUITY FUNCTION 
Equation Section (Next) 

 
A. DEFINITION 

In [1], the Cross Ambiguity Function (CAF) is mathematically defined as: 

* 2
1 2

0
( , ) ( ) ( ) ,

T
j ftCAF f s t s t e dtπτ τ −= +∫       (2-1) 

where  and  are continuous-time signals in analytic signal format (as defined in 

section B below), T is the integration period in seconds, τ is time delay in seconds, and f 

is the frequency offset in Hertz.   

1s 2s

In order to shift Equation (2-1) into the discrete (or sampled) time domain, let t = 

nTs and skff
N

= , where Ts is the sample period, 1
s

s
f

T
=  is the sampling frequency, n 

represents individual sample numbers, and N is the total number of samples.  Inserting 

these values back into Equation (2-1) and simplifying yields the discrete form of the 

CAF: 

1 2*
1 2

0
( , ) ( ) ( ) ,

knN j
N

n
CAF k s n s n e

π
τ τ

− −

=
= +∑       (2-2) 

where  and  are sampled signals in analytic signal form, N is the total number of 

samples in  and , τ is time delay in samples, and 

1s 2s

1s 2s k
N

 is the frequency difference in 

digital frequency, or fraction of the sampling frequency.  The magnitude of the CAF, or 

( , kτ )CAF , will peak when τ and k
N

s

 are equal to the embedded TDOA and FDOA, 

respectively, between the two signals  and .  Note the assumption that the signal’s 

presence has been previously detected, and subsequently collected as  and .  The 

CAF itself is also capable of signal detection.  This is discussed further in section V.C. 

1 2s

1s 2s

The code in Appendix A was developed to efficiently implement Equation (2-2).  

As will be shown in the next chapter, there are several different ways to implement 

Equation (2-2).  Efficiency becomes a large factor because of the potentially huge range 

5 



of TDOAs and FDOAs that must be searched.  Equation (2-2) can uncover TDOAs in the 

range –N to N and FDOAs for k in the range 
2
N− + 1 to 

2
N .  To search the entire range 

of possible TDOAs and FDOAs would require 2  calculations of the CAF, an ominous 

task for large N! 

2N

  

B. ANALYTIC SIGNAL VS. COMPLEX ENVELOPE 

In [1], Stein presents Equation (2-1) and then notes that the input signals  and 

 must be in complex envelope format.  In actuality, the signals must be in analytic 

signal format.  This is clearly an issue of semantics, but since a significant amount of 

time was lost attempting to compute the CAF on signals in complex envelope format, it is 

worthwhile to present the difference between complex envelope and analytic signal. 

1s

2s

Bandpass signals have two-sided frequency spectra.  Figure (2-1) depicts the 

spectral density (obtained by using the periodogram) of a Binary-Phase-Shift-Keying 

(BPSK) signal with carrier frequency f0 = 1 MHz and sampled at fs = 4 MHz.  The 

periodogram is symmetric about the center of the frequency axis, with identical lobes 

appearing in the positive and negative frequency planes.  When processing and analyzing 

a signal, it is generally common practice to deal only with the positive frequencies.  

Altering a signal such that only the positive side of the periodogram remains produces the 

analytic signal. 

If X(f) is the spectrum of a continuous time bandpass signal, then the analytic 

signal is computed as:  

( ) ( ) ( ),aX f X f j X f
∧

= +         (2-3) 

where ( )X f
∧

 is the Hilbert Transform of X(f): 

( ) sgn( ) ( )X f j f X
∧

= − f ,        (2-4) 

with the signum function defined as: 
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Figure 2-1.  Periodogram of a Sampled Bandpass Signal. 

 

1, 0
sgn( )

1, 0
f

f
f

+ >
= − <

        (2-5) 

Substituting Equation (2-4) into Equation (2-3) and simplifying leads to [3]: 

2 ( ), 0
( )

0, 0a
X f f

X f
f

>
=  <

       (2-6) 

Figure (2-2) shows the spectral density (periodogram) of the analytic signal of the 

sampled bandpass signal shown in Figure (2-1).  Note that the analytic signal is indeed 

one-sided, and the magnitude is exactly twice that of the lobes in Figure (2-1).   

Some applications require real bandpass signals to be represented as complex 

baseband signals.  Known as the complex envelope of the signal, it simply entails shifting 

the analytic signal in the frequency domain by an amount equal to the carrier frequency, 

such that the single-sided spectrum is symmetric about f = 0.  Using Fourier Transform 

properties, a shift in the frequency domain is accomplished by multiplication with a 

complex exponential.  The complex envelope of a signal can therefore be represented as: 
7 
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Figure 2-2.  Periodogram of Analytic Signal. 

 

~
2 0( ) ( ) j f

aX f X f e π−= t         (2-7) 

Continuing with the same example signal, Figure (2-3) shows the spectral density 

representation of the complex envelope.  Notice that the resulting periodogram is indeed a 

replica of the analytic signal, but shifted down to baseband. 

In order to work properly, the CAF requires input signals to be analytic signal 

representations.  When complex envelope signals were used instead, extensive (and 

frustrating) experience showed that the CAF accurately computed TDOAs, but in every 

case the calculated FDOA was exactly zero.  In retrospect, and in light of Figures (2-2) 

and (2-3), this result seems obvious.  After all, when represented in complex envelope 

form, a signal’s Doppler shift is effectively wiped out when the periodogram is shifted to 

baseband.  This is not good since it is the difference of the Doppler shifts present in two 

signals that provides the FDOA!  Therefore, computing the CAF on two complex 

envelope signals should always produce an FDOA equal to zero! 
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Figure 2-3.  Periodogram of Complex Envelope. 

 

 Now that the CAF has been mathematically defined, Chapter III will analyze the 

computational complexity of three different methods that can be used to implement 

Equation (2-2) directly.  Chapter III will also describe in detail the actual approach used 

by the MATLAB code in Appendix A to compute the CAF.  Finally, Chapter III will 

summarize the results of running the code on some example signal sets. 
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III. IMPLEMENTING THE CROSS AMBIGUITY FUNCTION 
Equation Section (Next) 

 
A. COMPUTATIONAL COMPLEXITY (COST) ANALYSIS 

There are three main approaches to implementing the discrete CAF (Equation 

(2-2)) directly:  utilizing the Discrete Fourier Transform, using the cross-correlation 

technique, and directly computing the summation.  Each of these three methods has 

advantages and disadvantages, which will be discussed in the following subsections.  

Additionally, the complexity of the methods will be analyzed in terms of their “cost,” or 

the total number of real multiply and real add operations required for each. 

 

1. The Fast Fourier Transform Method 
Looking closely at Equation (2-2), it clearly resembles the definition of the 

Discrete Fourier Transform (DFT) [4]: 

1 2

0
( ) ( ) ,

knN j
N

n
X k x n e

π− −

=
= ∑         (3-1) 

where 

[ ]( ) ( )X k DFT x n≡          (3-2) 

The summation and the complex exponential term are the same for both Equations (3-1) 

and (2-2).  By grouping the  and  terms in Equation (2-2), 1s 2s

1 2*
1 2

0
( , ) [ ( ) ( )] ,

knN j
N

n
CAF k s n s n e

π
τ τ

− −

=
= +∑       (3-3) 

and realizing that [ (  is analogous to x(n) in Equations (3-1) and (3-2), the 

CAF can be expressed as: 

*
1 2) ( )]s n s n τ+

*
1 2( , ) [ ( ) ( )]CAF k DFT s n s nτ = τ+        (3-4) 

Using Equation (3-4) to calculate the CAF for all values of τ and k, an individual 

DFT computation is required for each value of τ.  The DFT summation is normally 

computed using the Fast Fourier Transform (FFT) algorithm.  The power of the FFT is 
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that, for a given value of τ, it efficiently calculates the values associated with every value 

of k (i.e., all digital frequencies).  Since k can take on values from 
2
N− + 1 to 

2
N , the 

complete range of digital frequencies k
N 


  over which the FFT is calculated is 

approximately 




1
2

−  to 1
2

.  The main disadvantage with the FFT method is that for the 

vast majority of emitter-collector geometry and signal parameter combinations, the 

possible range of FDOAs is a very small subset of the full range of 1
2

−  to 1
2

.  Therefore, 

the FFT method can waste valuable computer resources on unnecessary computations 

when the FDOA search range is relatively small.  Another disadvantage is the fact that 

only integer values of k are evaluated in the FFT.  In order to achieve higher resolution in 

this method, the argument in Equation (3-4) could be padded with zeros before the FFT is 

computed.  This would effectively interpolate between integer values of k. 

In order to compare the relative costs of the three methods, it is convenient to 

evaluate the number of floating point operations (flops), i.e., multiplies and adds, 

required for computation.  In MATLAB, the “FFT” command is used to calculate the 

DFT.  From [5], the approximate number of complex multiplies and adds required for one 

FFT (assumed to be radix-2 from here on) is 

2log
2cm FFT
NC −

 =  
 

N

N

        (3-5) 

2log ,ca FFTC N− =          (3-6) 

where the subscripts cm and ca denote complex multiplies and complex adds, 

respectively.  Now, since complex numbers are of the form (X + jY), multiplying two of 

them together requires four real multiplies (X1*X2, X1*Y2, Y1*X2, and Y1*Y2) plus two 

real adds (one to sum the real terms and one to sum the imaginary terms).  Adding two 

complex numbers, on the other hand, requires just two real adds.  Applying these two 

relations to Equations (3-5) and (3-6) establishes the number of real multiplies and real 

adds that occur during one FFT computation: 
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22 logrm FFTC N− = N

N

N

N

N

τ+

         (3-7) 

23 log ,ra FFTC N− =          (3-8) 

where the subscripts rm and ra denote real multiplies and real adds, respectively.  Given 

that the amounts of time required to execute a real multiply and a real add are roughly the 

same, the total number of flops required for one FFT computation is the sum of Equations 

(3-7) and (3-8): 

25 logFFTC N=          (3-9) 

 Recalling that Equation (3-4) requires an FFT for every value of τ that is to be 

tested, the maximum cost in flops of the FFT method would be when the CAF is 

computed for all possible values of τ from –N to N: 

2
210 logMAX FFT methodC N− =        (3-10) 

Now, if the specific emitter-collector geometry and a priori knowledge of the signal 

parameters can narrow the range of τ values to be searched, the cost of the FFT method is 

reduced to: 

210 log ,FFT methodC N Nτ=         (3-11) 

where Nτ is the total number of time lags for which the CAF will be computed.  Equation 

(3-11) represents the cost metric for the FFT method that will be compared to the other 

two methods. 

 

2. The Cross-Correlation Method 
Equation (2-2) can also be rearranged such that it can be implemented with the 

cross-correlation function, which is defined as [4]: 

1 *

0
( ) ( ) ( ),

N
xy

n
R x n y nτ

−

=
= ∑         (3-12) 

where 

[ ]( ) ( ), ( )xyR XCORR x n y nτ ≡         (3-13) 
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The term “XCORR” is the MATLAB command that executes the cross-correlation 

function.  Equations (2-2) and (3-12) share a common summation term, so the terms in 

the CAF expression must be rearranged and regrouped as follows:   

*( )1 2 2
1 2

0
( , ) ( ) ( ) ,

k n kN j j
N N

n
CAF k s n s n e e

τ τπ π
τ τ

+− + −

=

 
= +∑

  
     (3-14) 

Note that the second, extra complex exponential is required in order to convert the n into 

the (n + τ) term in the first complex exponential.  Realizing that  in Equation (3-14) 

is analogous to x(n) in Equations (3-12) and (3-13), and that 

1( )s n

( )2 2
2 ( )

k n kj j
Ns n e e

τ τπ π
τ

++ − 
+

  

N   is analogous to y(n + τ), the CAF can be expressed as: 

( )2
1 2( , ) ( ), ( )

k nj
NCAF k XCORR s n s n e

τπ
τ

−+   = 
    

      (3-15) 

Using Equation (3-15) to calculate the CAF for all values of τ and k, an individual 

XCORR computation is required for each value of k.  The power of the XCORR function 

is that, for a given value of k, it calculates the values associated with every value of τ, 

from –N to N.  This can be very desirable compared to the FFT method since the probable 

search range of TDOAs is likely to be much greater than the range of FDOAs that would 

need to be searched.  Another advantage to this method is that k does not have to be an 

integer.  In Equation (3-15), k can take on non-integer values, allowing for any desired 

degree of resolution in FDOA calculation.  The main disadvantage with the XCORR 

method is that it is quite expensive since each invocation of XCORR requires more than 

three times the number of flops as an FFT. 

In order to analyze its cost, the XCORR function can be broken down into FFTs.  

Note that the cross-correlation function, Equation (3-12) is essentially a convolution 

without the time reversal in the y term.  Convolutions, and thus cross-correlations, can be 

computed efficiently by taking both signals into the frequency domain with FFTs, 

multiplying the result, and then performing an inverse FFT to get back to the time 

domain: 
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[ ] [ ]{ }1( ) * ( ) ( ) ( )
xcorr

*x n y n FFT FFT x n FFT y n−≡      (3-16) 

Therefore, every XCORR function requires three FFT operations (at a cost of three times 

the number of flops listed in Equation (3-9)) plus N complex multiplies (or 6N flops) for 

the element-by-element multiplication of the two inner FFTs in Equation (3-16).  The 

total number of flops required to compute a single XCORR function is therefore: 

23*(5 log ) 6 3 (2 5log )XCORRC N N N N= + = + 2 N     (3-17) 

Now, assuming that k takes on the integer values in the range 
2
N− + 1 to 

2
N , the 

maximum cost of the XCORR method would be approximately: 

2
23 (2 5logMAX XCORR methodC N− = + )N

),N

      (3-18) 

In the likely event that geometry and signal parameters reduces the range of k values for 

which the CAF needs to be calculated, the actual cost for the XCORR method would be: 

        (3-19) 23 (2 5logXCORR method kC N N= +

where Nk is the total number of frequency bins for which the CAF will be computed.  

Equation (3-19) represents the cost metric for the XCORR method that will be compared 

to the other two methods.  

  

3. The Summation Method 
For this final method of computing the CAF, Equation (2-2) is calculated directly.  

An advantage of the summation method is that it too can evaluate the CAF at any value 

of k, allowing for high resolution FDOA calculations.  The disadvantage is that it requires 

a double loop to calculate the CAF for every value of τ and k.  The reliance on loops is 

very costly, particularly for interpretive programming languages such as MATLAB. 

The maximum cost for the summation method would be for the case where the 

CAF is computed for all 2N values of τ and all N values of k (assuming just the integer 

values of k).  Assuming that the cost of the conjugation operation is negligible, and that 

the multiplies in the complex exponential are done ahead of time, each iteration of the 
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summation will require two complex multiplications, or 12 flops.  Since the summation 

goes through N iterations, the summation method’s maximum cost in flops is: 

3*12*2 * 24MAX SUM methodC N N N− = N=

N N

      (3-20) 

Now, assuming that the range of τ and k values can be narrowed down, the actual cost of 

the summation method would be: 

         (3-21) 12 ,SUM method kC Nτ=

where Nτ and Nk are the total numbers of τ and k values, respectively.  Equation (3-21) 

can be used to compare costs with the other two methods.  Equations (3-11), (3-19), and 

(3-21) can be used to evaluate which method would be most efficient for a particular 

emitter-collector geometry and set of signal parameters, which of course would determine 

the range of τ and k values (and thus Nτ and Nk) for which the CAF would need to be 

evaluated.   

 Table (3-1) summarizes the maximum and narrowed search range complexities of 

the three methods described above. 

 

Method 
Maximum Complexity 

(flops) 

Narrowed Search Range 

Complexity (flops) 

FFT 2
210 logN N  210 logN N Nτ  

Cross-Correlation 2
23 (2 5logN N+ ) ) 23 (2 5logkN N N+  

Summation 324N  12 kN N Nτ  

 
Table 3-1.  Computational Complexities of Three Direct CAF Computation Methods. 

 

 By comparing the maximum complexities in Table (3-1), if all possible integer 

values of k and τ were to be searched, then the FFT method would be the most efficient.  

If the range of τ and k values were narrowed by geometric and signal parameter 
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considerations, however, the most efficient method would depend upon the total number 

of possible TDOAs and FDOAs, Nτ and Nk, that would be evaluated.   

It is important to note that the three methods described represent direct 

computations of the CAF.  In most cases, Nτ and/or Nk would be large enough to make 

“brute-force” computation of the CAF (using any of the three methods) an overwhelming 

burden on computer resources.  A more efficient approach involves a two-step 

computation of the CAF, implementing a “coarse mode” and a “fine mode” to compute 

the TDOA and FDOA within reasonable accuracy. [1]  This is the approach implemented 

by the MATLAB code in Appendix A.  The following section describes the approach in 

detail. 

 

B. ANALYSIS OF CAF SOFTWARE 
As mentioned in the section above, the three methods of directly computing the 

CAF are computationally much too expensive to use as a one-step process, even when the 

number of τ and k values is narrowed due to knowledge of the specific geometry in use.  

In order to reduce the processing burden to an acceptable level, computing the CAF can 

be broken into two distinct parts:  a “coarse” mode and a “fine” mode.  In the coarse 

mode, all possible values of τ and k (as determined by geometry and signal parameters) 

are processed in order to produce a rough (or coarse) estimation of the TDOA and FDOA 

between the two signals.  The coarse estimates are then fed into the fine mode, which 

computes the final TDOA and FDOA calculations.  An algorithm for the coarse mode is 

described in [1] and is the basis for the code generated for this thesis.  As for the fine 

mode, the summation method described in the previous section is used.  The following 

subsections describe the coarse and fine modes, as well as their implementation in 

“CAF.m,” which is listed in Appendix A. 

 

1. The Coarse Mode 
Reference [1] provides an algorithm to calculate coarse estimates of the TDOA 

and FDOA between two signals.  The goal of the algorithm is to produce coarse estimates 

that are accurate enough to enter a fine mode, while keeping processing burden as small 
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as possible.  In order to accomplish this, the algorithm makes use of convolution 

properties, as well as breaking the input signals into smaller blocks to speed processing.  

The algorithm is represented by the following modified version of Equation (2-2) [1]: 

211 * 11
1 1 2

0
( , ) ( ; ) ( ; ) 0,...,

2

kmjN N
R

k

NCAF qN m v S k v R S k R q e m
π−−

=
+ = + + =∑   (3-22) 

In Equation (3-22),  refers to the FFT of the Rth block of  and 

 refers to the FFT of the Rth block of .  As mentioned,  and  are 

processed in sub-blocks that are smaller than the total number of data points in each 

signal, N.  The size of each sub-block is  elements, q is an index for the sub-block(s) 

being processed, and v represents the frequency bin shift.  The notation 

1( ; )S k R 1( )s n

2S2 ( ; )S k R 2 ( )s n 1S

1N

RCAF  refers to 

the calculation which combines the Rth block of  with the (R + q)th block of .  In 

order to avoid circular convolution effects, 50 percent overlap is utilized, such that the   

(R + q)th block of S  consists of 

1S 2S

2
1

2
N  data elements and 1

2
N  zeros.  Recalling Equation 

(3-4), Equation (3-22) can be rewritten as: 

*
1 1 2( , ) ( ; ) ( ;RCAF qN m v DFT S k v R S k R q+ = + + )      (3-23) 

 Equation (3-23) calculates RCAF  for all values of m (from 0 to 1

2
N ) for a given q 

and v.  For every fixed combination of q and v, RCAF  is computed for each sub-block 

(i.e., for R = 1 to 
1

N
N

).  Figure (3-1) illustrates how the sub-blocks would be processed 

for two signals of length N = 4096 and a sub-block length of N1 = 2048.  For   R = 1, the 

first block of  is processed with the first and second blocks of  (q goes from 0 to 1, 

making (R + q) go from 1 to 2).  For R = 2, the second block of  is processed only with 

the second block of sub-block  (in this case, q cannot exceed 0 since (R + q) cannot 

exceed the total number of sub-blocks).  The magnitudes of the calculations are then 

averaged to obtain one value for every fixed q and v.  For example, in Figure (3-1), there 

are two computations for which q = 0.  These two magnitudes are averaged to get the  

1S 2S

1S

2S
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q = 0

S1(n)
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R = 1

q = 1

S1(n)

S2(n) R + q = 2
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q = 0

S1(n)

S2(n) R + q = 2

 
Figure 3-1.  Coarse Mode Sub-Block Processing. 

 

value associated with q = 0.  There is only one computation for which q = 1, so that 

magnitude is the one associated with q = 1.  Finally, the maximum of all the averaged 

values is determined, along with the values of q, v, and m that produced the peak.  With 

these three parameters, the coarse TDOA and FDOA are computed as follows: 

1 (coarseTDOA qN m in samples= + )        (3-24) 

1
(coarse

NFDOA v freqency bin
N

= #)        (3-25) 

The coarse values for TDOA and FDOA obtained from Equations (3-24) and (3-25) are 

then used as the starting point for the fine mode computations. 

 A major limitation of this algorithm is that it does not work properly for situations 

where the TDOA is a negative value.  This is easily overcome, however, by simply 

reversing the order of the input signals.  In other words,  and  in Equation (3-23) can 1S 2S
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be switched if necessary to avoid a negative TDOA.  The only effect on TDOA and 

FDOA when reversing the order of the signals is that the sign is flipped in both cases.  

Unlike the case for negative TDOAs, the algorithm works fine for both positive and 

negative FDOAs. 

 

2. The Fine Mode 
Once coarse estimates of the TDOA and FDOA have been computed by finding 

the maximum value of the CAF, it is necessary to interpolate that peak in order to obtain 

the actual TDOA and FDOA within the desired resolution.  This is what the fine mode 

accomplishes.  Since the fine mode need only evaluate a few TDOAs and FDOAs on 

either side of the coarse estimates, one of the three direct computation methods described 

in section A above can be utilized without much burden on processing resources. 

In order to determine which of the three methods is most efficient for fine mode 

calculations, it is convenient to compare the “Narrowed Search Range” computational 

complexity equations summarized in Table (3-1).  Since Nτ and Nk will be relatively small 

in the fine mode, it is clear that the FFT method will be more efficient than the cross-

correlation method.  So, to decide which method to use, the FFT and summation 

equations can be compared as follows: 

212 10 logkN N N N N Nτ τ<         (3-26) 

Canceling like terms and simplifying yields: 

2
5 log
6kN < N          (3-27) 

or 

1.22 NkN >           (3-28) 

If Inequalities (3-27) and (3-28) are true, then the summation method is the one to use.  

Otherwise, the FFT method would be the most efficient.  It is a fair assumption that 

will not be more than 10 for fine mode calculations.  Therefore, the summation 

method would be the most efficient method when .  For coding 

kN

1.2(10)2 4096N or N> >
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purposes, the assumption was made that sampled signals used in the CAF would contain 

more than 4096 elements.  Therefore, the fine mode is accomplished by implementing the 

summation method.  The MATLAB program written to perform the coarse and fine 

computations is called “CAF.m”.  The next section describes it in detail. 

 

3. The “CAF.m” Program 
The program CAF.m, listed in Appendix A, is a MATLAB function that 

computes the TDOA and FDOA between two sampled signals.  It is invoked in the 

MATLAB command window with a line of the form:  

[TDOA, FDOA] = CAF(S1, S2, Max_f, fs, Max_t); 

The input arguments S1 and S2 are the two sampled signals in analytic signal format.  

Max_f is the maximum magnitude of FDOA, in Hertz, that is expected between the two 

signals.  The argument fs is the sampling frequency used to generated the sampled signals 

S1 and S2.  The sampling frequency is assumed to be the same for both signals.  Max_t is 

the maximum TDOA, in seconds, expected.  Note that Max_f and Max_t are functions of 

the geometry and signal parameters for a given scenario.  Also note that Max_t must be 

positive do to the coarse mode algorithm’s constraint, as described in section 1 above.  If 

the expected Max_t is negative, then S1 and S2 need only be reversed in the function call 

shown above (e.g.,  [TDOA, FDOA] = CAF(S2, S1, Max_f, fs, Max_t);).  The output 

arguments TDOA and FDOA make the computations available to the MATLAB user in 

variables of the same names. 

 The first step in CAF.m is to reshape S1 and S2 to ensure that they are column 

vectors.  This takes advantage of the fact that MATLAB stores variables and performs 

computations on them in a column-wise fashion.  Next, the most appropriate size of sub-

block (N1) is determined.  N1 nominally starts out at 1024, but the while loop ensures 

that N1 is large enough to ensure proper resolution.  For example, if the maximum 

frequency bin expected _ 1Max f N
fs 


  were less than one, then the resolution would not 

be good enough to discern the correct frequency bin.  Until acceptable resolution is 

obtained, N1 is successively multiplied by two.  This takes advantage of MATLAB’s 



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more efficient FFT operations on vectors whos sizes are powers of two.  In no case will 

N1 be larger than 2 , as this is roughly the maximum size for which 

processing is efficiently possible.  Clearly this is dependent upon the specific system 

being used for the processing.  In some cases, the sub-block size may be larger than the 

size (N) of the signal vectors.  In this case, CAF.m will pad the signal vectors with 

enough zeros to make the overall length equal to N1. 

19 524288=

 Next, CAF.m determines the total number of sub-blocks that are in the signal 

vectors, Number_of_Blocks.  This is simply 
1

N
N

, where N is the length of the signals and 

N1 is the size of one sub-block.  Every block of  will be processed, so the variable R 

will go from one to Number_of_Blocks.  The program then uses the input arguments 

Max_t and Max_f to determine the range of values for q and v, respectively, that must be 

used in the subsequent calculations.  Note that each sub-block represents a period of time 

equal to 

1S

1 sN T , and q represents multiples of this value.  Therefore, q’s values will be 

dependent upon how large the maximum expected TDOA (Max_t) is.  For example, if 

Max_t is three microseconds and 1 sN T  is two microseconds, then q need only take on the 

values zero, one, and two.  Any value greater than two would cause unnecessary 

processing since it would correspond to TDOAs above Max_t.  Likewise, the frequency 

bin values, v, that need to be computed are determined from the user’s defined Max_f.   

 The heart of the coarse mode section of CAF.m is a triple nested loop, which runs 

through all of the required values for R, q, and v.  Figure (3-2) is a flow chart that shows 

the triple loop and the processing steps that occur for the coarse mode.  The outermost 

loop runs through all of the required values of v.  The next loop runs through all values of 

R (i.e., from one to Number_of_Blocks).  Within the R loop, the program picks out the 

elements of S1 that correspond to the Rth block, and then performs an FFT on the result.  

As required by Equation (3-23), the resulting FFT is then shifted by v frequency bins.  

The innermost loop then runs through all required values of q.  As per Equation (3-23), 

the (R + q)th block of S2 is then obtained and subjected to an FFT.  Note that, as required 

by the algorithm, only the first 1
2

N  data elements of the (R + q)th block are used, with the  
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YES
 

Figure 3-2.  Flow Chart of Coarse Mode in CAF.m. 

 

remaining 1
2

N  elements being all zeros.  A final FFT is performed on the product of the 

S1 block and the conjugated S2 block.  The magnitude of the result is then added to the 

accumulating total for all previous instances of that particular value of q.  Once the q and 

R loops are finished, the magnitudes are divided by the total number of times that each 

value of q was used.  This calculates the averages, as required by the algorithm.  Next, 
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the maximum value contained in the resulting matrix of values is compared to the current 

max value.  If it is greater, then the program saves that value, as well as the q, v, and m 

that caused the new maximum.  Once the v loop is completed, all computations have been 

accomplished for the coarse mode, and the resulting values of q, v, and m are then used to 

compute the coarse TDOA and FDOA using Equations (3-24) and (3-25), respectively.  

Note that in Equation (3-24), m represents the frequency bin number of the N1-sized 

FFT.  In CAF.m, m is really the index into the FFT.  In order to convert that index into 

the actual frequency bin number, the term 1 1
2

N m− + +
 

  is used since the FFT elements 

begin with the 1 1
2

N− +
 

 th frequency bin.  So, to summarize, the 


1 1

2
N m− + +

 

  term in 

CAF.m is equivalent to m in Equation (3-24). 

 The next section of CAF.m represents the fine mode of the CAF computation.  

Because the accuracy of the course estimations is not great, and because noise in the 

input signals degrades the accuracy even further, the initial fine computations are made 

for a fairly large number of parameter values.  The set of time samples computed 

(contained in the vector tau_val) is the coarse TDOA estimation plus or minus 10 

samples.  Likewise, the set of frequency bins computed (contained in the vector k_val) is 

the coarse FDOA estimation plus or minus 10 bins. 

 Next, the summation method (Equation (2-2)) is used to carry out the fine 

calculations.  This requires a double loop to run through all of the values contained in the 

k_val and tau_val vectors.  For each value of k, the complex exponential term is 

computed as a vector, so that N separate calculations are not required within the inner 

loop.  This reduces the overall processing burden.  In the inner loop, the S2 vector (which 

is already conjugated as required in Equation (2-2)) is shifted the appropriate number of 

time samples.  The shift operation is accomplished by the MATLAB function shiftud.m, 

obtained from [9] and listed in Appendix A.  Finally, the S1, S2, and exponents vectors 

are multiplied (element by element in one step using MATLAB’s “.*” command) and 

then summed to obtain one scalar value.  The magnitude of that value is then stored in a 

matrix for that particular value of k and t.  Once the double loop is finished, the 

maximum value in the CAF matrix is determined, along with the values of TDOA and 
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FDOA that caused that maximum value.  The variables TDOA and FDOA then contain 

the initial fine mode calculations. 

 The TDOA is displayed to the user in both samples and seconds, and the FDOA is 

displayed in both digital frequency and Hertz.  The user is also told to what resolution the 

solutions are calcualated, in seconds for the TDOA and in Hertz for the FDOA.  The user 

is then given the following options: 

 1) Re-compute with finer resolution for TDOA 

 2) Re-compute with a finer resolution for FDOA 

 3) Re-compute with finer resolutions for both TDOA and FDOA 

 4) Keep the current solutions 

The TDOA computation involves shifting the S2 vector a specific number of samples (or 

elements).  Since it is only possible to shift elements by an integer amount, the only way 

to increase the TDOA resolution is to increase the sampling frequency of the signal 

vectors.  This follows from the fact that the TDOA in seconds is equal to the TDOA in 

samples divided by the sampling frequency.  A very quick way to increase the sampling 

frequency of a vector in MATLAB is to use the built-in interp function, which will 

resample a vector at a specified integer multiple of the original sampling frequency.  The 

resulting vector’s length is the specified integer times the original length, thereby 

ensuring that the exact same period of time is covered in the new vector.  In CAF.m, if 

the user chooses to compute a TDOA with higher resolution, then S1 and S2 are 

resampled at twice their sampling frequency, thereby increasing the TDOA resolution by 

a factor of two.  Now, for a fine TDOA computation, the true value will be within 0.5 

samples on either side of the calculation.  Therefore, successive TDOA computations 

(i.e., after doubling the sampling frequency) need only check three possible TDOAs:  the 

previously calculated TDOA multiplied by two, plus the value on either side of it.  For 

example, if a TDOA is computed to be 18 samples, the true value would be somewhere 

between 17.5 and 18.5 samples.  Doubling the sampling frequency, the TDOAs to check 

would be 18*2 ± 1, or sample numbers 35, 36, and 37. 
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 The FDOA computation simply involves the value of k used in the complex 

exponential term in Equation (2-2).  As mentioned in section III.A.3 above, an advantage 

of the summation method is that any value of k can be used; it is not restricted to integer 

numbers.  This makes increasing FDOA resolution quite easy.  The approach used in 

CAF.m is to increase the FDOA resolution by a factor of 10.  For a fine FDOA 

computation, the true value will be in the range of 0.5 10xk x± , where x is the exponent 

when k is in scientific notation form.  Taking 11 equally spaced values in that range will 

provide a resolution improved by a factor of 10.  For example, if a fine FDOA is 

computed to be 0.6 ( 6 1 ) bins, the true value will be somewhere in the range 

, or 0.55 to 0.65.  Therefore, the FDOA would be recomputed by testing 

the 11 values of k from 0.55 to 0.65, spaced 0.01 apart. 

10x −

20.6 0.5 10x −±

 The entire fine mode in CAF.m is enclosed in a while loop that continues to 

perform more improved calculations of TDOA and/or FDOA until either:  1) the user is 

satisfied with the results, or 2) the maximum processing capacity has been reached.  In 

the second case, TDOA improvement ends when the length of S1 and S2 reaches 

.  The FDOA can continue to be improved upon until the user is satisfied.  

When processing capacity is reached, the options that include TDOA optimization 

(numbers one and three in the list above) are removed from the user’s list of options.  

Once the optimization is complete and a final TDOA and FDOA have been reached, the 

user is given the option of displaying the actual CAF surface graphically.  The CAF 

surface is computed and plotted by the CAF_peak.m function, which is listed in 

Appendix A, and described in the next section.  The CAF surface is computed for the 

original S1 and S2, in order to minimize processing burden.  The surface is computed for 

the TDOA ± 50 samples, and for the FDOA ± 20 frequency bins.  It is important to note 

that the CAF surface is for display only, as its peak occurs at un-interpolated values of 

TDOA and FDOA.  Once the surface is plotted, or if the user opts to not plot it, the 

CAF.m function is completed.  Section III.C below shows the results of running some 

example signal sets through CAF.m. 

192 524288=
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4. The “CAF_peak.m” Program 
The program CAF_peak.m, listed in Appendix A, is a MATLAB function that 

computes the CAF surface by comparing two sampled signals.  It is invoked with a line 

of the form:  

[TDOA, FDOA, MaxAmb, Amb] =  

           CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, fs); 

The input arguments S1 and S2 are the two sampled signal vectors in analytic signal 

format.  The arguments Tau_Lo and Tau_Hi represent the lowest and highest number of 

samples for which to compute the CAF surface.  Likewise, Freq_Lo and Freq_Hi 

represent the lowest and highest digital frequencies for which to compute the CAF 

surface.  Finally, fs is the sampling frequency.  The output arguments TDOA and FDOA 

make the computations available to the MATLAB user in variables of the same names.  

Note again that this program does not compute interpolated solutions of TDOA and 

FDOA.  It uses the FFT method described in section III.A.1 above.  The TDOA’s 

resolution is therefore only 0.5 samples, or 0.5 sT  seconds.  The FDOA’s resolution is  

0.5
N

 (digital frequency), or 0.5
sfN
 Hertz.  The output arguments MaxAmb and Amb return 

the magnitude of the surface’s peak and the matrix of values for the CAF surface (as 

bounded by the input arguments), respectively. 

 The first section of CAF_peak.m performs a number of checks to ensure that the 

input arguments are valid.  These checks are not really necessary when CAF.m calls the 

function, because CAF.m properly calculates the input arguments.  But CAF_peak.m can 

also be called directly by a user in the MATLAB command window.  This is where the 

checks become useful.  The function checks to ensure that there are enough input 

arguments, and that S1 and S2 are indeed vectors (and not matrices).  The program then 

reshapes the signal vectors to ensure that they are columns in order to take advantage of 

MATLAB’s column-wise nature.  The program uses zero padding to ensure that the 

signals are of the same length, and that their length is a power of two (again, for 

computing efficiency).  Next, Tau_Lo and Tau_Hi are checked to ensure that they are 

integers in the range –N to N and Freq_Lo and Freq_Hi are checked to ensure that they 
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are in the range –0.5 to 0.5.  Finally, the program ensures that Tau_Lo and Freq_Lo are in 

fact smaller than Tau_Hi and Freq_Hi, respectively. 

 Since the FFT method computes the CAF for all frequency values represented by 

the bins 1
2
Nk = − +

 

  to 

2
N , the program must determine the indices into each FFT that 

correspond to the user’s defined range of Freq_Lo to Freq_Hi.  Next, the CAF is 

computed in a for loop that runs through all of the values defined by the user’s range of 

Tau_Lo to Tau_Hi.  For each value, Equation (3-4) is computed by performing an FFT on 

the product of S1 with the conjugated S2, which is shifted by an amount equal to the loop 

variable t.  The appropriate values are then extracted using the previously calculated 

indices.  The magnitude of the resulting vector is then placed as a new column in the Amb 

matrix.  When the loop is completed, Amb contains all values for the CAF surface, as 

bounded by the input arguments.  Furthermore, Amb’s rows represent frequency bins and 

its columns represent numbers of samples.  The maximum value of Amb is the peak of 

the CAF surface, and the row and column associated with that peak are the FDOA and 

TDOA, respectively.  Finally, CAF_peak.m produces four different graphical views of 

the CAF surface.  The first is a three-dimensional view, the second is a two-dimensional 

view looking at the TDOA axis, the third is a two-dimensional view along the FDOA 

axis, and the final plot is a two-dimensional flat view looking down on the surface.  The 

next section shows the result of running some example signal sets through the CAF.m 

and CAF_peak.m programs. 

 

C. EXAMPLES AND RESULTS 
In order to test and evaluate the CAF.m and CAF_peak.m programs to ensure that 

they performed accurate computations, signal pairs with known TDOAs and FDOAs 

embedded in them were required.  To aid in the testing and evaluation, a signal 

generation software package from Statistical Signal Processing, Inc. (SSPI) [10] was used 

to create signals with TDOAs and FDOAs.  The SSPI software was capable of producing 

only constant TDOAs and FDOAs, which caused no problem for testing and evaluation 

purposes.  But as discussed in Chapter I, constant TDOAs and FDOAs are not found in 

real-world applications.  Emitter-collector geometries change with time due to relative 
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motion between them, making the associated TDOAs and FDOAs themselves time-

varying.  This issue is discussed further in Chapters IV and V.  

To validate the accuracy of the CAF.m and CAF_peak.m programs, several 

sampled signals with different time delays and frequency offsets were generated with 

SSPI software.  Several combinations of signals were input into CAF.m and 

CAF_peak.m to ensure that their solutions matched the known TDOAs and FDOAs.  The 

following subsections detail the results. 

 

1. Constant TDOA With Zero FDOA 
For Case #1, a pair of signals with the following parameters were input into the 

CAF.m program: 

Signal Type:  BPSK with rectangular envelope 

Carrier Frequency:  0.21 (digital frequency) 

Samples Per Bit:  16 

Signal-to-Noise Ratio for the two signals:  20 dB & 20 dB 

Number of Samples:  65536 

TDOA:  358 samples 

FDOA:  0  (digital frequency) 

Note that digital frequency is used and no specific sampling frequency is defined.  For 

testing purposes, however, a sampling frequency of fs = 1 MHz was assumed.  This 

makes the effective symbol rate 1 62,500
16 /

MHz bps
samples bit

= .  The expected TDOA is 

then 4
6

358 358 3.58 10
1 10s

samples x
f x

−= =  seconds.  The expected FDOA is 0 * fs = 0 Hz.  

Figure (3-3) shows the MATLAB command window with the results of running CAF.m 

on the signal pair described above.  Note that because the signals were generated with 

zero FDOA and an integer number of samples for TDOA, CAF.m’s first computation  
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Figure 3-3.  CAF.m Results – Case #1. 

 
Figure 3-4.  3-D CAF Surface – Case #1. 
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Figure 3-5.  2-D Cuts Through CAF Surface – Case #1. 

 

produces the exact solution.  Therefore, no further iterations of the fine mode were 

required.  Figure (3-4) shows a three-dimensional view of the CAF surface, while Figure 

(3-5) provides two-dimensional slices of the surface along the TDOA and FDOA axes.  

Note the triangular shape of the surface along the TDOA axis.  This makes sense 

considering that the basic CAF equation is in the form of a convolution summation.  

When two rectangular-envelope pulses are convolved, the result is triangular. 

 For Case #2, a pair of signals with the following parameters were input into the 

CAF.m program: 

Signal Type:  BPSK with half-cosine envelope 

Carrier Frequency:  0.21 (digital frequency) 

Samples Per Bit:  16 

Signal-to-Noise Ratio for the two signals:  0 dB & -20 dB 

Number of Samples:  65536 
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Figure 3-6.  CAF.m Results – Case #2. 

 
Figure 3-7.  3-D CAF Surface – Case #2. 
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Figure 3-8.  2-D Cuts Through CAF Surface – Case #2. 

 

TDOA:  423 samples 

FDOA:  0  (digital frequency) 

Note that there are three main differences between Case #2 and Case #1.  First, the 

signals have a half-cosine envelope rather than a rectangular one.  Second, the signals 

have more noise, as seen in their smaller SNRs.  Third, the expected TDOA is different:  

423 samples or  seconds (f44.23 10x −
s = 1 MHz).  Figures (3-6) through (3-8) show the 

results of running this signal set through CAF.m.  Again, note that CAF.m computed the 

exact solutions since the actual TDOA was an integer number of samples and the FDOA 

was zero.  Also note the effect of the lower SNRs in this pair of signals.  The noise floor 

around the CAF peak is significantly higher than in Case #1.  Finally, note the shape of 

the surface along the TDOA axis.  It is more sinusoidal, or perhaps Gaussian, in shape.  

This makes sense since the signals’ envelopes were half-cosines.  The convolution of two 

sinusoidal shapes gives a similar shape.  In the next subsection, signal pairs with non-zero 

TDOAs and FDOAs will be examined. 
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2. Constant TDOA and Constant FDOA 
The next two pairs of signals have constant TDOAs and FDOAs embedded within 

them.  As stated before, constant TDOAs and FDOAs are unrealistic for real-world 

geometries.  Also, it is impossible to have simultaneously constant TDOAs and FDOAs.  

This is because whenever a constant TDOA exists, the FDOA must always be zero!  

After all, geometries that produce constant TDOAs are such that the individual Doppler 

shifts between each collector and the emitter are identical.  The difference between the 

Dopplers, the FDOA, is therefore zero!  Using signals with constant TDOAs and FDOAs 

is, however, quite convenient for testing the operation of the CAF software.  For Case #3, 

a pair of signals with the following parameters were input into the CAF.m program: 

Signal Type:  BPSK with rectangular envelope 

Carrier Frequency:  0.21 (digital frequency) 

Samples Per Bit:  16 

Signal-to-Noise Ratio for the two signals:  20 dB & 20 dB 

Number of Samples:  65536 

TDOA:  358 samples 

FDOA: – 0.0005  (digital frequency) 

Figures (3-9) through (3-12) show the MATLAB command window results of running 

CAF.m on the signals with the above parameters.  Again using the assumed value of fs = 

1 MHz, the expected TDOA is  seconds and the expected TDOA is –500 Hz.  

Note that the TDOA was computed exactly after the first iteration.  After three more 

iterations, the FDOA was also computed exactly.  Notice that with each subsequent 

iteration, the resolution of the TDOA calculation improves by a factor of two, and the 

FDOA resolution improves by a factor of 10, as expected.  Figures (3-13) and (3-14) 

show the CAF surface in three dimensions and two dimensions, respectively.  The plots 

are as expected, with the surface’s peak occurring at a TDOA of exactly  

seconds, and an FDOA that is within FFT method resolution of –500 Hz. 

43.58 10x −

43.58 10x −
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Figure 3-9.  CAF.m Results – Case #3 (1st Iteration). 

 
Figure 3-10.  CAF.m Results – Case #3 (2nd Iteration). 
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Figure 3-11.  CAF.m Results – Case #3 (3rd Iteration). 

 
Figure 3-12.  CAF.m Results – Case #3 (4th Iteration). 
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Figure 3-13.  3-D CAF Surface – Case #3. 

 

 
Figure 3-14.  2-D Cuts Through CAF Surface – Case #3. 
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 For the final test, Case #4, signals with the following parameters were input into 

the CAF.m program: 

Signal Type:  BPSK with half-cosine envelope 

Carrier Frequency:  0.21 (digital frequency) 

Samples Per Bit:  16 

Signal-to-Noise Ratio for the two signals:  0 dB & -20 dB 

Number of Samples:  65536 

TDOA:  423 samples 

FDOA:  – 0.001953125   (digital frequency) 

The expected TDOA is  seconds and the expected FDOA is –1953.125 Hz.   44.23 10x −

 

 
Figure 3-15.  CAF.m Results – Case #4. 
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Figure 3-16.  3-D CAF Surface – Case #4. 

 

 
Figure 3-17.  2-D Cuts Through CAF Surface – Case #4. 
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Figure (3-15) shows the MATLAB command window results after running CAF.m, while 

Figures (3-16) and (3-17) show the 3-D and 2-D views of the surface, respectively.  Note 

that the FDOA was computed exactly after the first iteration.  This is because the digital 

frequency (–0.001953125) just happens to be associated with an integer frequency bin 

number, k.  Since digital frequency is defined as k
N

x
4

, and N = 65536, it follows that k = 

128.  Note also that the computed TDOA is 4.24  seconds, which is exactly one 

sample away from the actual TDOA of  seconds.  Further iterations of the fine 

mode do not yield the exact TDOA.  This is likely due to the noise in the signals, which 

can introduce errors.  This issue will be discussed further in Chapter VI. 

410−

10−4.23x

 As the four different examples show, the CAF.m and CAF_peak.m programs 

function properly to compute accurate TDOAs and FDOAs and display the resulting CAF 

surfaces, respectively.  As mentioned before, the signal sets used to validate the programs 

were not physically realizable due to the artificiality of the constant TDOAs and FDOAs.  

Chapter IV provides background information on BPSK signals, and also describes a 

Cartesian representation for practical emitter-collector geometries.  Chapter V then 

describes the approach used in the sig_gen.m program, which generates BPSK signals 

based upon user-defined geometries.  Several example signal sets are generated and then 

input into CAF.m.  The results are analyzed and compared with theoretical TDOA and 

FDOA calculations. 
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IV. GEOMETRY-SPECIFIC SIGNAL GENERATION 
Equation Section (Next) 

 
A. BINARY-PHASE-SHIFT-KEYING SIGNALS 

The MATLAB code in Appendix B is specifically designed to generate Binary- 

Phase-Shift-Keying (BPSK) signals.  The BPSK technique is a very common digital 

modulation technique, and it is widely used in both military and commercial 

communications systems [6]. 

In BPSK modulation, a sinusoidal carrier wave is modulated by a data signal 

consisting of the binary digits “1” and “0.”  The data signal shifts the phase of the carrier 

waveform to one of two states, either zero or 180° (or π radians).  Due to the familiar 

trigonometric relationships 

sin( ) sin( )
cos( ) cos( ),

x x
x x

π
π

+ = −
+ = −

         (4-1) 

it is clear that the two possible states in a BPSK system are simply the carrier multiplied 

by ±1. 

 The general analytic expression for a BPSK signal is: 

0
0

( ) cos[2 ( )]
1, 2

sym
i i

t T
s t A f t t

i
π ϕ

≤ ≤
= + 

=
     (4-2) 

where A is simply the amplitude of the carrier, 0f  is the carrier frequency, ( )i tϕ  takes on 

the values of zero or π, and Tsym is the data symbol period.  In binary modulation 

techniques, a symbol consists of just one data bit, either 0 or 1.  Therefore, in binary 

systems such as BPSK, the terms “data symbol” and “symbol period” are synonymous 

with “data bit” and “bit period,” respectively.  Using Equation (4-2) and bearing 

Equations (4-1) in mind, the two possible waveforms transmitted in a BPSK signal are: 

1

2 0

( ) cos(2 )
( ) cos(2 )

s t A f t
s t A f t

π
π

=
= −

0         (4-3) 

Equations (4-3) represent continuous-time or analog signals.  In the discrete-time or 

sampled case, the following representations are used: 
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1 0

2 0

( ) cos[2 ( )]
( ) cos[2 ( )]

s

s

s n A f nT
s n A f nT

π
π

=
= −

        (4-4) 

The convention used throughout this thesis is that a data bit 0 is represented by  and 

a data bit 1 is transmitted as . 

1( )s n

2 ( )s n

 Figure (4-1) shows an example of a sampled BPSK signal modulated with the 

data stream [0 1 0 1].  The signal was sampled at fs = 10 kHz and has the following 

parameters: 0f  = 650 Hz and the symbol rate 1
sym

sym
R

T
=  = 200 bits per second (bps). 

0 0.005 0.01 0.015 0.02
-2

-1.5

-1

-0.5

0

0.5

1

1.5
Sampled BPSK Signal

Time (seconds)

X
(n

T s)

Tsym Tsym Tsym Tsym 

 
Figure 4-1.  Example of a BPSK Signal (After [6]). 

 

Notice that the beginning of the transmitted signal is a cosine wave, represented as  

and indicating that the first data bit is a 0 in accordance with Equations (4-4).  As 

expected,  continues until the end of the symbol interval is encountered at 0.005 s, 

which is the reciprocal of the defined R

1( )s n

1( )s n

sym.  At this point, the next bit in the data stream is 

transmitted.  Since the phase has changed by π radians,  is the transmitted signal 2 ( )s n
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and the data bit must therefore be a 1.  Had the next data bit been a 0 instead,  

would have been transmitted for another period and no phase change would have been 

detected in the signal.  By looking at each symbol period, it is easy to determine that the 

transmitted data stream is indeed [0 1 0 1]. 

1( )s n

Ev

 

B. EMITTER – COLLECTOR GEOMETRY  
 Real-world collection systems often employ a pair of separate collectors.  The 

signals received by the individual collectors are from the same transmitter, but shifts in 

time and frequency are inherent due to the different paths traveled by the two signals.  In 

these configurations, the two received signals can be processed to determine the TDOA 

and FDOA between the two collectors.  With exact knowledge of the collectors’ 

positions, successive TDOA and FDOA measurements can be plotted to determine the 

location of the associated emitter. 

 No known signal generation software gives the ability to create signals that are 

based upon specific emitter-collector geometries.  Some programs can generate signal 

pairs that have constant TDOAs and FDOAs embedded in them, but this does not 

accurately model real-world systems whose geometries change with time due to non-zero 

relative velocities between emitters and collectors.  Figure (4-2) shows a simple model of 

a generic emitter-collector geometry.  Cartesian coordinates simplify the model by 

assuming that the emitter and collectors are moving on or around a flat earth.  Obviously, 

real-world systems are three-dimensional, but Figure (4-2) is in two dimensions solely for 

ease of depiction.  Imagine that a Z-axis is perpendicular to the paper. 

 In Figure (4-2), C1, C2, and E represent the two collectors and the emitter, all 

located at the coordinate positions shown.  The symbols r  and r  are the relative 

position vectors between each of the collectors and the emitter, while , , and  

are the respective velocity vectors.  It is important to note that Figure (4-2) represents an 

instantaneous “snapshot” of a generic system’s geometry.  Since the emitter and/or 

collectors are moving at their respective velocities, the geometry changes with each 

passing instant of time.  This is precisely why the TDOAs and FDOAs in a system are 

time-varying in nature.  Chapter V will describe in detail the software in Appendix B, 

1 2

vC1 C2v
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which creates geometry-specific signals that capture the time-varying quality of the 

TDOA and FDOA.  Chapter V will also show that the software in Appendix B works 

properly by showing the results of inputting generated signals into the CAF software in 

Appendix A. 

 

 
Figure 4-2.  2-D Emitter-Collector Geometry (After [7]). 

 

C. CALCULATING THEORETICAL TDOA(S) AND FDOA(S) 
The TDOA between two signals is simply the difference in time that it takes two 

signals to travel down their respective paths from the emitter to the associated receivers.  

For the geometry shown in Figure (4-2), the TDOA between C1 and C2 is therefore [7]: 

,TDOA
c
−

= 2 1r r
         (4-5) 
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where −2r r1



 is the difference in length between the two paths and c is the speed of 

light, at which the signals travel.  The vectors r  and r  are determined simply by 

calculating the difference between their x and y coordinates and those of the emitter, so 

that 

2 1

1

1

2

2

E C

E C

E C

E C

x x
y y

x x
y y

− 
=  −

− 
=  − 

1

2

r

r
         (4-6) 

Now, using the Pythagorean Theorem to define the magnitudes of the path vectors r  and 

, Equation (4-5) becomes 

1

2r

( ) ( ) ( ) ( )2 2 2
2 2 1

1
E C E C E C E CTDOA x x y y x x y y

c
 = − + − − − + −  

2
1   (4-7) 

Of course, Equation (4-7) is strictly for a two-dimensional geometry, but it can easily be 

expanded for the 3-D case as well: 

( ) ( ) ( )

( ) ( ) ( )

2 2
2 2

2 2
1 1

1
E C E C E C

E C E C E C

TDOA x x y y z z
c

x x y y z z

= − + − + −
− − + − + − 

2
2

2
1

    (4-8) 

Equation (4-8) is used to calculate the theoretical TDOAs for generated signal pairs.  In 

Chapter V, theoretical values are compared to the results produced by the CAF software. 

 The FDOA between two signals is simply the difference between their two 

Doppler shifts.  From Figure (4-2), the Doppler shift between one of the collectors and 

the emitter can be defined as 

0 ,ff v
c

δ =           (4-9) 
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where f0 is the signal’s constant carrier frequency, c is the speed of light, and v is the 

(scalar) velocity of closure between the collector and emitter.  The velocity of closure is 

simply defined as the component of the relative velocity that is along the path of 

propagation.   Since the collector and emitter velocities and the associated propagation 



path are vector quantities, the velocity of closure (v in Equation (4-9)) must be calculated 

with the vector dot product as follows [8]: 

,v ⋅= v r
r

          (4-10) 

where r represents the path vector and v is the relative velocity between the collector and 

emitter, as follows: 

Ex Cx

Ey Cy

v v
v v

− 
=  − 

v           (4-11) 

In Equation (4-11), v  and represent the velocities of the emitter and collector in the 

x-direction, while v  and v  are the y components of the velocities.  Now, substituting 

Equation (4-10) into Equation (4-9), the Doppler shift for a collector and emitter pair is: 

Ex

Ey

Cxv

Cy

0 ,ff
c

δ
 ⋅= 
 

v r
r           (4-12) 

Substituting Equations (4-11) and (4-6) into Equation (4-12) and simplifying produces 

the form of the Doppler shift in two dimensions: 

( )( ) ( )( )
( ) ( )

0
2 2

Ex Cx E C Ey Cy E C

E C E C

v v x x v v y yff
c x x y y

δ
 − − + − − =
 − + −  

    (4-13) 

Now, since the FDOA is defined as the difference between the two Doppler shifts 

associated with each of the collectors and the emitter, FDOA can be expressed as: 

( )( ) ( )( )
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( )( ) ( )( )
( ) ( )
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   (4-14) 
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Equation (4-14) is the FDOA for a two dimensional geometry such as that found in 

Figure (4-2).  It is a straightforward process to extend Equation (4-14) to a three 

dimensional geometry: 

( )( ) ( )( ) ( )(
( ) ( ) ( )

)

( )( ) ( )( ) ( )(
( ) ( ) ( )

)

2 2 2 2 20
2 2 2
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c x x y y z z
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x x y y z z

=

 − − + − − + − −
 − + − + −
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− + − + − 

2

1

 (4-15) 

Equation (4-15) is used to calculate the theoretical FDOAs for generated signal pairs.  In 

Chapter V, theoretical values are compared to the results produced by the CAF software. 
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V. IMPLEMENTING THE SIGNAL GENERATOR 
Equation Section (Next) 

 
A. ANALYSIS OF THE SIGNAL GENERATION SOFTWARE 

 

1. The “Sig_gen.m” Program 
The program sig_gen.m, listed in Appendix B, is a MATLAB function that 

generates pairs of BPSK signals according to user-defined signal parameters and 

collector-emitter geometries (of the form described in section IV.B).  The function is 

invoked in the MATLAB command window with a line of the form:  

[Sa1, Sa2, S1, S2] = sig_gen; 

There are no input arguments to the function, since the user is queried for all required 

parameters.  The four output arguments are returned as signal vectors.  Sa1 and Sa2 are 

the two generated signals in analytic signal format, which is required for subsequent CAF 

computations.  S1 and S2 are the real-valued, time domain representations of the same 

two signals.  The real signals are made available in case the user desires to plot the 

signals in the time domain, or to look at the periodogram of the real data, etc. 

 The first section of the function queries the user for all information required to 

generate the signals.  The user is first asked to input the position and velocity vectors of 

the two collectors and the emitter at “time 0.”  All position and velocity vectors are 

entered in the form “[X Y Z],” where X, Y, and Z denote the components of position and 

velocity in each of the 3-D Cartesian directions.  Position elements are expressed in 

meters and velocity elements are expressed in meters per second.  All velocities are 

assumed to be constant during the period of collection.  Note that “time 0” represents the 

beginning of the collection period onboard the collectors.  This is an important point that 

will be discussed later in this section.  The two collectors are assumed to have exactly 

synchronized time clocks.  With the geometry inputs completed, the user is asked to 

define the following signal parameters:  carrier frequency (f0) in Hz, sampling frequency 

(fs) in Hz, the total number of samples to generate (N), the ratio of symbol energy to 

noise power spectral density at each collector (Es_No1 and Es_No2) in dB, and the 

symbol rate (Rsym) in symbols per second.  The function calculates the sample period 
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directly from the sampling frequency as 1Ts
fs

= .  Likewise, the symbol period is 

calculated as 1Tsym
Rsym

= .  Finally, Es_No1 and Es_No2 are converted from dB to ratio 

values for future computations.  The relationship used is: 

10
0 0

( ) 10logs sE EdB
N N

=    and   
1 ( )

10 0

0
10

Es dB
NsE

N
=      (5-1) 

 Next, the speed of light constant (c) is defined as .  The 

amplitude (A) for the signals is defined to be equal to one.  The choice of this value is 

simply for convenience; any value could be used here.  The average signal power (Ps) is 

then calculated, since it will be needed to compute the noise power necessary to achieve 

the user’s desired 

82.997925x10 /m s

0

sE
N

.  The definition of a periodic signal’s average power is [6]: 

20
0

0

1 ( )T
sP s

T
= ∫ t dt           (5-2) 

Using either  or  from Equations (4-3) and substituting into Equation (5-2), 1( )s t 2 ( )s t

2 20
00

0

1 cos (2 )T
sP A f

T
π= ∫ t dt         (5-3) 

Simplifying Equation (5-3) leads to the result: 

2

2s
AP =           (5-4) 

Sig_gen.m uses Equation (5-4) to calculate the constant Ps directly. 

 Next, the program creates the noise components of the two signals, according to 

the 
0

sE
N

 defined by the user.  The noise modeled by the program is Additive White 

Gaussian Noise (AWGN), which has a mean of zero and a variance that can be 

determined as follows.  From [6], Es represents the amount of energy in one symbol, and 

can be described as the average signal power times the symbol period: 
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s s symE PT=           (5-5) 

The noise power spectral density, N0, can be described as the noise power divided by the 

bandwidth: 

0
nPN

B
=           (5-6) 

Dividing Equation (5-5) by Equation (5-6), 

0 /
s sym s syms

n n

PT PT BE
N P B P

= =         (5-7) 

Rearranging Equation (5-7)to determine the noise power, 

0/
s sym

n
s

PT B
P

E N
=           (5-8) 

From [11], Pn for AWGN is simply equal to its variance, .  Since the signals are 

generated digitally, the noise power is spread throughout the total range of digital 

frequencies from 

2σ

1
2

−  to 1
2

.  This makes the bandwidth, B, equal to one.  This leads to: 

2

0
(

/
s sym

s

PT B
where B

E N
σ = 1)=         (5-9) 

The built-in MATLAB function randn produces random values from a Gaussian 

distribution with a mean of zero and a variance of one.  In order to generate noise with 

the proper power, the randn-generated numbers must be properly scaled.  Using the 

following property [11]: 

2var( ) var( ),c x c x⋅ =          (5-10) 

it is clear that the scaling factor is σ (not σ2).  Therefore, sig_gen.m calculates σ by taking 

the square root of both sides of Equation (5-9).  Finally, the two AWGN vectors (one for 

each collector) are generated by multiplying the unit-variance values produced by randn 

by the respective σ values.  Each AWGN vector contains N values of noise, which will 
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eventually be added, element-by-element, to the N computed values of the repective 

signals.  The noise vectors are called Noise1 and Noise2. 

 Next, the program computes a position matrix for each of the two collectors.  This 

is a straightforward process since the user provides the starting position and the velocity 

for the collectors.  The position of a collector at each sample period is simply equal to its 

position at the last sample plus a distance equal to the velocity times the sample period.  

Using two for loops, sig_gen.m calculates the position of each collector at each sample 

time, from 1 to N.  The resulting position matrices are N x 3, since a 1 x 3 vector (of the 

form [X Y Z]) defines a collector’s position at each of the N sample times. 

 The next major portion of sig_gen.m computes the position matrix and time 

vectors for the emitter.  Again, note that time 0 refers to the time onboard the collectors 

when the signal collection begins (i.e., nTs, where n = 0).  Successive times onboard the 

collectors are simply multiples of the sampling period.  Since the signal must travel from 

the emitter along two separate, non-zero paths to the collectors, it takes different amounts 

of time for the signal to travel to the two receivers.  Therefore, for samples taken at the 

receivers at time nTs, the emitter will have transmitted those portions of the signal at two 

different times that are less than nTs by amounts equal to the time it takes the signals to 

travel down the respective paths.  For example, assume that two collectors are positioned 

such that one is 1000 km from the emitter, and the other is 1100 km from the emitter.  

The sample taken at the first collector at time 0 will represent the portion of the signal 

transmitted at time (0 – 
6

8
1 10

2.997925 10 /
x m

x m s
), or –0.003336 seconds.  On the other hand, 

the sample taken at the second collector at time 0 will have been transmitted at time (0 – 
6

8
1.1 10

2.997925 10 /
x m

x m s
), or –0.003669 seconds.  In order to capture this timing arrangement, 

the transmit times corresponding to each sample must be tracked for each collector.  

Since the emitter may be moving, its position must also be tracked.  In order to compute 

its position, the transmit times for each sample must be used along with the user-defined 

velocity and starting position.  Since the position of the emitter is needed to figure out the 

distance of the path between it and the collectors, it is clear that the time and position of 
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the emitter are interdependent.  They must therefore be determined in an iterative fashion 

as described in the next paragraph. 

 A while loop is used to determine the time and position of the emitter for the first 

sample (i.e., the one that arrives at the collector at time 0) at collector number one.  The 

initial estimates are that the transmit time is 0 and the position is the one entered by the 

user.  Within the loop, the time is “updated” to be zero minus the path distance divided 

by the speed of light.  The path distance is that between the collector’s position and the 

current estimate of the emitter’s position.  The position of the emitter is then computed as 

the initial position plus the revised time multiplied by the emitter’s velocity.  Note that 

the time here is negative, so that the emitter is successively being “walked back” to where 

it was when it emitted the first sample.  This iterative process continues in the while loop 

until two successive estimations of the time differ by less than one period of the carrier 

(i.e., 
0

1
f

).  When the loop ends, the computed time and position of the emitter are stored 

in a time vector (t1) and position matrix (Pe1), respectively.  The process just described 

is then repeated in order to determine the time and position of the emitter corresponding 

to the first sample at the second collector.  The emitter’s time vector and position matrix 

associated with collector two are t2 and Pe2, respectively. 
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 Next, the “beginning” of the collected signal’s data stream must be determined.  

The program compares the emitter times corresponding to the first sample taken at the 

two collectors.  The earlier of the two times defines the starting point (called StartPoint in 

the code) of the data stream.  The data symbols are stored as a vector (P) of zeros and 

ones, and the correct index into that vector must be computed for each of the two 

collectors in order to ensure that bit changes occur at the right times.  In the program, the 

two indexes are called SymbolIndex1 and SymbolIndex2.  Since the earliest transmit time 

at the emitter is defined to be the starting point of the data stream, the index into the data 

vector is equal to one for the associated collector.  The other collector, then, will have an 

index into the data vector that is equal to one plus the difference between the two transmit 

times divided by the symbol period.  For example, assume that transmit times are –1 

second for collector number one and –3 seconds for collector number two, and that the 

symbol period is one second.  Collector two has the earlier transmit time, and therefore 



SymbolIndex2 is equal to one.  The transmit time for collector one is two seconds later, 

which corresponds to two symbol periods.  SymbolIndex1 must therefore be equal to 

three, or two greater than collector two’s index. 

 Now that the emitter’s position and transmit time for each collector’s first sample 

have been computed, they must be determined for the remaining samples (i.e, numbers 2 

through N).  This is accomplished with a for loop running from 2 to N.  Nested inside is a 

while loop very similar to the ones used to compute the transmit times and positions for 

the first sample (described above).  The main difference is that for each sample, the initial 

estimate of the emitter’s position is equal to the position for the previous sample plus the 

sample period times the emitter’s velocity.  Then, inside the while loop, the transmit time 

is computed as the sample time (nTs) minus the path distance divided by the speed of 

light.  The path distance here is that between the collector’s position at time nTs and the 

current estimate of the emitter’s position.  The position of the emitter is then computed as 

the initial position plus the elapsed time (i.e., the difference between the transmit time for 

the first sample and the estimate of the current sample’s transmit time) multiplied by the 

emitter’s velocity.  The while loop ends when the difference between two successive time 

estimates is less than one period of the carrier.  When the overall for loop is done, the t1 

vector contains N elements, each of which represents the time at which the associated 

sample was actually transmitted by the emitter.  Likewise, the Pe1 matrix contains N (1 x 

3) vectors, each representing the emitter’s position at the corresponding transmit times in 

t1.  The process just described is then repeated for collector two, so that all the values for 

the t2 vector and Pe2 matrix are calculated. 
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 Next, the data sequence is randomly generated and stored in the vector P.  The 

possible values are 0 and 1, and they are assumed to be equally likely to occur.  

Therefore, MATLAB’s rand function is used to create a vector of random numbers 

between 0 and 1.  All numbers that are less than 0.5 are called 1s, and all numbers greater 

than 0.5 are called 0s.  Note that prior to creating the random data bits, the program 

initializes the rand function to a specific seed.  This is useful for testing purposes because 

it ensures that the same random data stream is generated every time the program is run.  

The line “rand('seed',5);” can simply be removed if a different random data stream is 

desired each time.  Or, greater control could be given to the user by making the seed 



number an input to the program.  Alternatively, if a user desired to have a specific data 

stream, the entire vector P could be made an input argument. 

 Finally, the actual transmitted signals are generated, sample-by-sample.  Equation 

(4-2) is computed directly for each collector’s signal, with t equal to the transmit times 

computed and stored in the vectors t1 and t2.  The phase component, ( )i tϕ , is equal to the 

associated data bit stored in P (indexed by SymbolIndex1 and SymbolIndex2) multiplied 

by п (and hence giving values equal to either 0 or п, as required).  The noise elements 

from Noise1 and Noise2 are also added to their respective signal components.  For each 

of the two signals, a for loop is used to compute all N samples.  For each sample’s 

computation, a test is made to determine if the total elapsed time has crossed into the next 

symbol period.  If so, the appropriate index is incremented by one, so that the next data 

bit is obtained from P.  If the next symbol period has not yet been reached, then the 

current data bit remains in effect.  At the end of the two for loops, the vectors S1 and S2 

contain the real-valued sampled signals that are received by collectors one and two, 

respectively.  Using MATLAB’s hilbert function, Sa1 and Sa2 are computed.  They 

represent the complex-valued analytic signal representations of S1 and S2, respectively.  

Note that although the Hilbert Transform is defined as in Equation (2-4), the hilbert 

function in MATLAB computes the analytic signal, Equation (2-3), directly.  The four 

resulting signal vectors are returned to the user as output arguments. 

 After the signals have been created, sig_gen.m calls the tdoa_fdoa.m function, 

which computes and displays the theoretical values of the TDOA and FDOA at the 

beginning and end of the collection period.  The toda_fdoa.m program is briefly 

described in the next section. 

 

2. The “Tdoa_fdoa.m” Program 
The tdoa_fdoa.m program takes a number of input arguments and computes the 

expected TDOA and FDOA at both the beginning and end of a signal collection.  Again, 

real-world geometries produce time-varying TDOAs and FDOAs, so it is convenient to 

know what the expected range of values for each will be.  The function’s input arguments 

are:  the carrier frequency (f0), the emitter’s beginning and ending position vectors 
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relative to each signal (Pe1_b, Pe1_e, Pe2_b, and Pe2_e), the beginning and ending 

position vectors for the two collectors (Pc1_b, Pc1_e, Pc2_b, and Pc2_e), and the 

velocity vectors for the emitter (Ve) and collectors (Vc1 and Vc2).  The function then 

computes the beginning and ending TDOAs and FDOAs by implementing Equations 

(4-8) and (4-15), respectively.  The results are then displayed in the MATLAB command 

window. 

 

B. EXAMPLE GEOMETRIES AND SIGNAL SETS  
In order to test the sig_gen.m function and ensure that it operates correctly, 

several different signal sets were generated with the software, and then input into CAF.m 

to compare actual TDOA and FDOA measurements with the theoretical values calculated 

by tdoa_fdoa.m.  The following subsections document the results of five different pairs of 

signals.  The first three show the results of simple geometries that produce different 

combinations of constant and time-varying TDOAs and FDOAs.  The last two 

subsections show the results of simulating real-world geometries with spaceborne and 

airborne collectors. 

 

1. Constant TDOA and Zero FDOA  
As pointed out in section III.C.2, it is impossible for an emitter-collector 

geometry to produce simultaneously constant, non-zero TDOAs and FDOAs, because a 

constant TDOA causes the associated FDOA to be zero.  To illustrate this point, a pair of 

signals was generated with the parameters and geometry inputs listed in Figure (5-1), 

which is the MATLAB command window after running the sig_gen.m function.  The 

geometry is such that the emitter and both colletors are on a line in the x-direction.  Both 

collectors are to the right of, and moving away from, the emitter.  Note that in MATLAB, 

“1e5” is mathematically equivalent to 1 1 50x .  Also note that the defined geometry and 

velocities for this example are not necessarily realistic.  They just represent a simple case 

showing that a constant TDOA leads to an FDOA of zero.   Finally, notice that the 

sampling frequency is less than the carrier frequency.  This does not adversely impact the 

CAF computations since the goal is to find the TDOA and FDOA, not to preserve the 
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Figure 5-1.  Example Signal Set (Constant TDOA, FDOA = 0). 

 

integrity of the transmitted signal.  It is important, however, to ensure that the sampling 

frequency is significantly higher than the signals’ data rate.  Since a BPSK signal’s null-

to-null bandwidth is about twice the data rate [6], sampling at the Nyquist rate (i.e., twice 

the bandwidth) will ensure this condition is met. 

At the bottom of Figure (5-1), the theoretical TDOAs and FDOAs at the 

beginning and end of the collection are shown.  The TDOA is 0.00016678 seconds at the 

beginning and end, so it is indeed constant.  The theoretical FDOA is zero at both the 

beginning and end, as expected.  Figure (5-2) shows the MATLAB command window 

results when the signal pair is input into CAF.m.  After a few iterations of the fine mode, 

CAF.m calculated the TDOA as 0.00016685 seconds, which has an error of about 0.042 

percent of the theoretical calculation.  And the measured FDOA is exactly zero.  Figures 

(5-3) and (5-4) show the 3-D and 2-D views of the CAF surface, respectively.  Note that 

the surface has a very well defined peak that is narrow and nearly triangular.  This is to  
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Figure 5-2.  CAF.m Results (Constant TDOA, FDOA = 0). 

 
Figure 5-3.  3-D CAF Surface (Constant TDOA, FDOA = 0). 
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Figure 5-4.  2-D Cuts Through CAF Surface (Constant TDOA, FDOA = 0). 

 

be expected for signals with rectangular envelopes, and for situations where the TDOA is 

constant.  The next section will show how a time-varying TDOA affects the resulting 

CAF surface. 

 

2. Time-Varying TDOA and Constant FDOA 
Figure (5-5) shows the geometry and parameters used to generate a pair of signals 

that has a time-varying TDOA and a constant FDOA.  Again, the geometry and signal 

parameters are not at all realistic, but the values were chosen in order to exaggerate the 

effect that a time-varying TDOA has on the CAF surface.  For comparison purposes, the 

values were also chosen so that the ending TDOA would be somewhat close to the 

constant TDOA of the previous section.  As Figure (5-5) shows, the TDOA is clearly 

time-varying, since it is 0.00010007 seconds at the beginning of the collection and 

0.00016642 seconds at the end.  The FDOA is a constant value equal to –21831.767 Hz. 
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Figure 5-5.  Example Signal Set (Time-Varying TDOA, Constant FDOA). 

 
Figure 5-6.  CAF.m Results (Time-Varying TDOA, Constant FDOA). 
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Figure (5-6) shows the MATLAB command window that results from running the 

signals through CAF.m and iterating the fine calculations a few times.  The TDOA is 

calculated to be 0.00013183 seconds.  Since the TDOA is time-varying, the only check 

for validity is that the computed TDOA is indeed somewhere between the theoretical 

values of the TDOA at the beginning and end of the collect.  The computed value of the 

FDOA is –21826.969 Hz, which is about 0.022 percent different from the theoretical 

value.  Figures (5-7) and (5-8) show the resulting CAF surface in 3-D and 2-D, 

respectively.  The most striking difference between this surface and the one in the 

previous section is that this peak is nowhere near triangular.  It is much broader and 

flatter than the previous surface.  This result makes perfect sense.  After all, if a TDOA is 

constant, then the resulting surface should present a very specific and well-defined peak.  

If the TDOA is time-varying, on the other hand, the resulting surface will have a peak 

whose only requirement is that it fall within the possible range of TDOAs defined for the  

 

 
Figure 5-7.  3-D CAF Surface (Time-Varying TDOA, Constant FDOA). 
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Figure 5-8.  2-D Cuts Through CAF Surface (Time-Varying TDOA, Constant FDOA). 

 

duration of collection.  In the next section, a pair of signals with time-varying TDOA and 

time-varying FDOA is presented. 

 

3. Time-Varying TDOA and Time-Varying FDOA 
 Figure (5-9) shows the parameters and geometry for a pair of generated signals 

with a TDOA and FDOA that are both time-varying.  This is clear from the theoretical 

calculations.  The TDOA goes from 0 to 0.00026684 seconds, and the FDOA goes from  

–9.4346 to –13.3437 Hz.  Figure (5-10) shows the results of inputting the signals into 

CAF.m.  After a few iterations, the TDOA is computed as  seconds and the 

FDOA is computed as –10.1693 Hz.  Both of these values are within the ranges of the 

theoretical values. 

53.0518 10x −

 Figures (5-11) and (5-12) show the resulting CAF surface.  Notice that the peak is 

fairly wide along the TDOA axis, and that it is also wide along the FDOA axis.  This 

confirms the fact that time-varying TDOAs and FDOAs cause the peak of a CAF surface  
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Figure 5-9.  Example Signal Set (Time-Varying TDOA and FDOA). 

 
Figure 5-10.  CAF.m Results (Time-Varying TDOA and FDOA).   
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Figure 5-11.  3-D CAF Surface (Time-Varying TDOA and FDOA). 

 

 
Figure 5-12.  2-D Cuts Through CAF Surface (Time-Varying TDOA and FDOA). 
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to “spread.”  In this case, the spreading is somewhat unusual, making the surface appear 

to have two ridges on the FDOA axis.  Also note that the TDOA and FDOA computed by 

CAF.m and shown in Figure (5-10) appear to be on the smaller ridge in Figure (5-12).  

This can happen when multiple peaks appear in the CAF.  This phenomenon is discussed 

further in Chapter VI. 

 

4. Simulated Low Earth Orbit Satellite Collectors 
The results of the preceding three sections validate the algorithm used in the 

sig_gen.m since the computed TDOAs and FDOAs compared favorably with the 

theoretical calculations in each case.  As stated before, however, the parameters and 

geometries used were not realistic for real-world systems.  In this section, a pair of 

signals is generated with a realistic geometry:  a stationary ground-based emitter and a 

pair of satellite collectors in a Low Earth Orbit (LEO) of 1000 kilometers.  The collectors 

are spaced 100 kilometers apart on a line parallel to the earth’s surface (assumed flat).  

For this geometry, the orbital velocity of the collectors is 7.35 kilometers per second [12].  

At time 0, collector number one is directly above the emitter on the earth’s surface.  The 

carrier frequency of the signal is 2 GHz.   Many test cases showed that defining sampling 

frequency, carrier frequency, and/or symbol rate such that they are exact multiples of 

each other produces unreliable results.  Accordingly, the sampling frequency is set to 

0.21 MHz and the symbol rate is 1900 symbols per second.  Note that the sampling 

frequency is three orders of magnitude below the carrier frequency, but it is much greater 

than the data rate, as required.  Figure (5-13) shows the result of running the sig_gen.m 

software for the situation described above.  Notice that the theoretical TDOA and FDOA 

values indicate that both are time-varying, although not by much.  This is because the 

relatively short collection time does not produce a large disparity in the geometry at the 

beginning and end of the collection. 

Figure (5-14) shows that the CAF.m’s computation of the TDOA and FDOA 

compares favorably with the theoretical values.  Figures (5-15) and (5-16) show the 

resulting CAF surface.  The peak of the surface does not come to an exact point, so a  
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Figure 5-13.  Example Signal Set (LEO Satellite Collectors & Ground-Based Emitter). 

 
Figure 5-14.  CAF.m Results (LEO Satellite Collectors & Ground-Based Emitter). 
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Figure 5-15.  3-D CAF Surface (LEO Satellite Collectors & Ground-Based Emitter). 

 

 
Figure 5-16.  2-D Cuts Through CAF Surface (LEO Collectors & Ground Emitter). 
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small amount of smearing is evident.  On the FDOA axis in Figure (5-16), the slope of 

the surface on the left hand side is not quite as steep as the slope on the right hand side.  

This indicates a slight smearing to the left, which makes sense given the range of FDOAs 

predicted in Figure (5-14). 

 

5. Simulated Airborne Collectors 
In this section, another real-world system is simulated:  a pair of airborne 

collectors and a ground-based emitter.  The collectors are assumed to be mounted on an 

aircraft with the same dimensions and characteristics of an EP-3 Aries.  One collector is 

assumed to be mounted in the nose of the aircraft, and the other collector in the tail.   This 

provides for maximum separation of the collectors onboard the aircraft.  From [13], the 

length of an EP-3 is 105 feet, 11 inches; its maximum speed is 473 knots; and its 

maximum altitude is 28,000 feet.  For purposes of collection, the assumed speed is 300 

knots, and the assumed altitude is 25,000 feet.  The airplane is assumed to be flying 

parallel to a coastline at a distance of 100 nautical miles from the coast.   

Figure (5-17) shows the results of running sig_gen.m for the situation described 

above.  Note that all geometric inputs have been converted to meters and meters per 

second, as appropriate.  For the Cartesian coordinate system in this case, the x-direction 

is parallel to the coastline, the y-direction is altitude, and the z-direction is perpendicular 

to the coastline in the plane of the earth’s surface (i.e., it measures lateral distance from 

the coastline).  The signal has a carrier frequency of 4 GHz and a symbol rate of 1.2 

megabits per second, and it is sampled at 1.1 GHz.   Notice that the resulting theoretical 

values of TDOA and FDOA are constant.  This is only because the geometry does not 

change much during such a small collection time.  If a much larger number of samples 

were taken, the TDOA and FDOA would show more change.  Also notice that the 

FDOA, at –0.35708 Hz is a miniscule fraction of the sampling frequency! 

Figure (5-18) shows the results obtained by running CAF.m.  The computed 

TDOA and FDOA compare reasonably well with the theoretical values.  The computed 

FDOA differs from its theoretical value by a minus sign, or about 0.7 Hz total.  Although 

this is a large error percentage-wise, it is reasonable when considering that the FDOA  
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Figure 5-17.  Example Signal Set (Airborne Collectors & Ground-Based Emitter). 

 
Figure 5-18.  CAF.m Results (Airborne Collectors & Ground-Based Emitter). 
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Figure 5-19.  3-D CAF Surface (Airborne Collectors & Ground-Based Emitter). 

 

 
Figure 5-20.  2-D Cuts Through CAF Surface (Airborne Collectors & Ground Emitter). 
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resolution for N = 65536 is 
91.1 10

65536
x Hz

samples
 = 16,784.7 Hz per sample!  In this context, 

CAF.m did a reasonable job of picking out a tiny FDOA. 

 Figures (5-19) and (5-20) show the resulting CAF surface.  The peak occurs at the 

expected TDOA of roughly 6 nanoseconds, but the FDOA at the peak is 0 Hz.  This 

makes sense considering the discussion in the previous paragraph.  For this situation, the 

FDOA is such a small fraction of the sampling frequency that the resolution achieved 

with N = 65536 is not sufficient to show the correct FDOA graphically.  Recall that 

CAF_peak.m uses the FFT method to generate the CAF values and plot the surface.  This 

is why CAF.m is able to determine the FDOA, while the resulting plot is unable to show 

it.  This section, along with the previous one, has shown that the programs created for this 

thesis are indeed able to model signals with realistic parameters and emitter-collector 

geometries, as well as compute the embedded TDOA and FDOA with a good degree of 

accuracy.  Section V.C below will demonstrate the CAF’s ability to detect signals. 

 

C. USING THE CAF FOR SIGNAL DETECTION 

71 

As shown throughout this thesis, the CAF is able to compute the TDOA and 

FDOA between two receivers collecting signals from the same emitter.  The TDOA and 

FDOA information can then be used to locate the emitter.  In many cases, the presence of 

the signal(s) may be known prior to collection.  The CAF itself, however, can also be 

used to detect the presence of a signal by processing a pair of collections and looking for 

peaks above the noise floor.  This can be useful for Low Probability of Detection (LPD) 

signals, which may be transmitted at very low 
0

sE
N

 levels.  As an example, consider the 

LEO collector system modeled in section V.B.4 above.  Using all of the parameters in 

Figure (5-13), the 
0

sE
N

 was successively reduced to show the effects on CAF 

computations and the CAF surface.  Figures (5-21) through (5-25) show the 2-D cuts 

through the CAF surface for 
0

sE
N

 levels of –20 dB, –40 dB, –45 dB, –50 dB, and –55 dB, 

respectively.  The –20 dB level does not appear to have affected the CAF surface much at  



 
Figure 5-21.  2-D Cuts Through CAF Surface (LEO Collectors, Es/No = –20 dB).  

 

 
Figure 5-22.  2-D Cuts Through CAF Surface (LEO Collectors, Es/No = –40 dB). 
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Figure 5-23.  2-D Cuts Through CAF Surface (LEO Collectors, Es/No = –45 dB). 

 

 
Figure 5-24.  2-D Cuts Through CAF Surface (LEO Collectors, Es/No = –50 dB). 
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Figure 5-25.  2-D Cuts Through CAF Surface (LEO Collectors, Es/No = –55 dB). 

 

all.  When the level is reduced to –40 dB, however, the surface is noticeable deformed.  

At –45 dB, the noise floor is getting noticeably higher compared to the peak.  At –50 dB, 

the surface is near the point of undetectability.  At –55 dB, the noise has completely 

buried the surface.  Although the CAF.m results are not depicted here, the program 

computed reasonable TDOAs and FDOAs up through the –45 dB level.  Thus, the CAF is 

able to detect the presence of the signal, and to estimate the TDOA and FDOA for 

subsequent location of the emitter.  Below –45 dB, however, the numerical results were 

completely incorrect.  Of course, if detecting a signal is the priority (as opposed to 

locating the emitter), then the TDOA and FDOA are not crucial.  A relatively good 

estimation of TDOA and FDOA may be meaningless anyway, considering the jagged 

edges on the CAF surface.  In any case, the existence of any surface clearly above the 

noise floor indicates the presence of a signal.  If no signal were present, then the CAF 

would be processing nothing but noise, and the plot would reflect just that.  Ideally, to 

detect the presence of a signal, one should know at least the carrier frequency and a rough 

idea of where the emitter is in order to narrow the “search” range for the CAF.   
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 In this chapter the sig_gen.m program was described in detail.  A number of 

signal sets were generated and input into CAF.m to ensure that the resulting TDOAs and 

FDOAs compared favorably with theoretical values.  The results confirmed that the 

sig_gen.m program functions properly.  Two realistic signal sets were generated that 

modeled practical emitter-collector geometries:  one with LEO satellite collectors and 

one with airborne collectors.  This showed that sig_gen.m provides a very useful 

capability to simulate signals for real-world situations.  Chapter VI will summarize the 

research and work done on this thesis, as well as provide some ideas for future work in 

CAF computation and signal generation. 
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VI. CONCLUSIONS 
Equation Section (Next) 

 
A. SUMMARY OF FINDINGS 

There were two goals for this thesis.  One was to develop MATLAB software that 

implements CAF techniques to efficiently compute the TDOA and FDOA between two 

sampled signals.  The second goal was to develop software capable of generating pairs of 

signals that are based upon user-defined parameters and emitter-collector geometries.  

The resulting programs, listed in Appendices A and B, achieved these two goals.   

Many real-world collection systems utilize CAF techniques to locate radio 

frequency transmitters.  These systems enjoy the benefit of enormous computing 

resources (e.g., supercomputers) with which to accomplish the CAF processing.  The 

software developed for this thesis (Appendix A), however, provides a new capability for 

users to conduct CAF computations with the much more limited processing power of a 

desktop PC.  In order to minimize processing burden, the CAF software splits the 

computations into coarse and fine modes.  The coarse mode implements the algorithm 

described in [1].  An analysis of the computational complexities of three direct CAF 

calculation methods showed that utilizing an explicit summation is the most efficient 

method for the fine mode.  Limitations of a desktop PC may restrict the size of the 

sampled signals that can be processed, but realistic simulations are definitely possible. 

The software in Appendix B provides a new capability for users to produce 

realistic BPSK signal sets that might be transmitted and collected by real-world systems.  

This capability, combined with the CAF software, allows a user to model practical 

systems to determine whether or not particular signals could be detected and/or their 

emitters located.  For example, a proposed LPD emitter could be simulated to analyze its 

effectiveness against CAF processing.  These programs could be useful in many other 

applications as well. 

 

B. FUTURE WORK  
There are a number of ways that future research could build upon the work 

described in this thesis.  One could analyze the theoretical processing gain provided by 
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the CAF, and compare it to the results of actual test cases.  For the CAF software, the 

coarse mode described in section III.B.1 only works for positive TDOAs.  The coarse 

algorithm could be reviewed and possibly modified to handle negative TDOAs.  During 

coarse mode processing in CAF.m, the estimations of TDOA and FDOA are associated 

with the single largest magnitude computed.  In reality, coarse mode processing can 

produce multiple peaks and the correct TDOA and FDOA could be associated with any 

of them.  The coarse algorithm in CAF.m could be modified so that it processes more 

than just the largest peak.  This would require determining a threshold (based upon noise 

and other factors), above which a peak would be considered a candidate.   

The fine mode in CAF.m could be automated so that the program itself would 

decide to what degree of resolution the TDOA and FDOA should be computed, rather 

than have the user decide how many times to run the fine mode.  Reference [1] describes 

how the standard deviation of the CAF surface in the TDOA and FDOA directions can be 

used to determine the maximum degree of accuracy that can be expected.  The standard 

deviations are dependent upon bandwidths, total collection time, and signal-to-noise 

ratios.  Defining the maximum accuracy then sets the maximum resolution required for 

computations. 

There are a couple of ways that the signal generation software could be enhanced.  

For example, it could be expanded to be able to generate other kinds of signals.  

Sig_gen.m is written so that it would be straightforward to add the ability to generate 

higher-order PSK signals (4-PSK, etc.).  Other signal types might be added as well 

(Amplitude-Shift-Keying, etc.).  Also, while the 3-D Cartesian coordinate system used in 

sig_gen.m provides a fairly realistic model, especially for short collect times, the program 

could be modified to use earth-centered coordinates instead.  This would be complicated, 

but would clearly make simulations even more realistic. 
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APPENDIX A:  MATLAB CODE – CAF SOFTWARE 
 

A.   “CAF.M” 
function [TDOA, FDOA] = CAF(S1, S2, Max_f, fs, Max_t); 
 
% ********************************************************************* 
% CAF takes as inputs two sampled signal vectors (S1 & S2) in analytic 
%  signal format, the maximum expected FDOA in Hertz (Max_f), the  
%  sampling frequency used to generate S1 & S2 (fs), and the maximum 
%  expected TDOA in seconds (Max_t).  The function then utilizes  
%  Stein's method in [1] to compute coarse estimations of TDOA and  
%  FDOA between S1 & S2.  Finally, "fine mode" calcualtions are made 
%  to compute the final TDOA and FDOA, which are returned to the  
%  user via the output arguments. 
 
% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  17 September 2001 
% ********************************************************************* 
 
clc; 
 
N = length(S1); 
S1 = reshape(S1,N,1);  % Ensures signals are column vectors due to  
S2 = reshape(S2,N,1);  % Matlab's better efficiency on columns 
 
S1_orig = S1;     % Want to preserve original input signals 
S2_orig = S2;     % for later use; S1 & S2 will be  
        % manipulated in the fine mode below. 
 
 
% The following while loop ensures that the sub-block size, N1, is 
% large enough to ensure proper resolution.  If Max_f/fs*N1 were 
% less than 1, then the Freq calculated at the end would always be 
% + or - 1/N1!  2^19 = 524288 is about the limit for efficient 
% processing speed. 
N1=1024; 
while (Max_f/fs*N1 < 2) & (N1 < 2^19)  
   N1 = 2*N1;          
end              
           
N2=N1/2; 
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if N1 > N       % For cases where resolution calls for 
   S1 = [S1;zeros(N1-N,1)];  % a sub-block size larger than the   
   S2 = [S2;zeros(N1-N,1)];  % signal vectors, pad the vectors with 
   N = N1;       % zeros so that they have a total of  
end         % N1 elements. 
 
% Want magnitude of Max_f, since +&- will be used below 
Max_f = abs(Max_f);    
Number_of_Blocks = length(S1)/N1;   % Number of sub-blocks to break 
            % the signal into 
 
Min_v = floor(-Max_f/fs*N1);   % Smallest freq bin to search 
Max_v = -Min_v;       % Largest freq bin to search 
v_values = Min_v : Max_v;    % Vector of all bins to search 
 
Max_samples = Max_t * fs;  % Maximum number of samples to search 
 
% Finds max number of block shifts (q) that must occur for each 
% R and v below. 
if Max_samples > N2   
 q_max = min(ceil((Max_samples - N2)/N1),Number_of_Blocks-1); 
else q_max = 0; 
end 
 
x=0; 
divisors = Number_of_Blocks:-1:1;  % Used to scale "temp" below... 
 
 
% ********************************************************************* 
% COARSE MODE computations. 
% ********************************************************************* 
 
for v = 1:length(v_values) 
   temp(1:N1,1:q_max+1)=0;   % Initializing -- saves time.... 
   for R = 0:Number_of_Blocks-1 
       
      % temp1 is the FFT of the R'th block of S1, shifted by "v" bins. 
      temp1 = fftshift(fft(S1(1+R*N1 : N1*(R+1))));  
      temp1 = shiftud(temp1,v_values(v),0);   
      for q = 0:q_max 
         % R+q cannot exceed the number of sub-blocks 
         if R + q > Number_of_Blocks-1 break  
         end 
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    % FFT of the (R+q)'th block of S2 
         temp2 = fftshift(fft([S2(1+(R+q)*N1 : N2 + N1*(R+q));... 
                    zeros(N2,1)])); 
         
         % Multiplies temp1 & temp2, FFTs the product, then adds to  
    % previous values for the same value of q (but different R) 
         temp(:,q+1) = temp(:,q+1) + ... 
                  abs(fftshift(fft(temp1.*conj(temp2)))); 
      end 
   end 
 
   % Each value of q was used a different # of times, so they must be 
   % scaled properly. 
   for q_index = 1:q_max+1   
      temp(:,q_index) = temp(:,q_index) / divisors(q_index);  
   end 
 
   % If combination of current v and any q provides a greater value 
   % than the previous max, then remember m, Q, & V. 
   if max(max(temp))>x    
      x = max(max(temp));   
      [m Q] = find(temp == max(max(temp))); 
       
      % Must do this since q starts at 0, but Matlab doesn't allow for 
      % zero indexing. 
      Q = Q - 1;    
      V = v_values(v); 
   end 
end 
 
% Coarse estimate of TDOA (in # of samples) 
TDOA_Coarse = Q * N1 + (-N2+1 + m);   
 
% Coarse estimate of FDOA (in Freq Bin #) 
FDOA_Coarse = V/N1*N;       
 
 
% The following 3 lines can be used to display the coarse estimates,  
% if desired. 
 
%disp(['The coarse TDOA estimate is: ', num2str(TDOA_Coarse),... 
%  ' samples.']); 
%disp(['The coarse FDOA estimate is: ', num2str(FDOA_Coarse/N),... 
%      ' (digital frequency).']); 
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% ********************************************************************* 
% FINE MODE computations. 
% ********************************************************************* 
 
S2 = conj(S2);   % S2 is conjugated in basic CAF definition 
 
 
% Vector of freq "bins" to use (DON'T have to be integers!!) 
k_val = FDOA_Coarse-10 : FDOA_Coarse+10; 
 
% Vectors of TDOAs to use (must be integers) 
tau_val = TDOA_Coarse-10 : TDOA_Coarse+10;  
 
done = 0; 
multiple = 1; 
decimal = 0; 
while ~done  % Fine mode iterations continue until user is done. 
    
   % Initialize to make later computations faster 
   amb(length(k_val),length(tau_val))=0;  
   Ntemp = N * multiple; 
   for k = 1:length(k_val)  % Must loop through all values of k 
 
 % Vector of complex exponentials that will be used 
      exponents = exp(-j*2*pi*k_val(k)/Ntemp*(0:Ntemp-1)'); 
       
    % Must loop through all potential TDOAs 
      for t = 1:length(tau_val)  
          
         % S2 is shifted "tau" samples 
         S2temp = shiftud(S2,tau_val(t),0); 
          
         % Definition of CAF summation 
         temp = abs(sum(S1.*S2temp.*exponents)); 
          
         % Save CAF magnitude for the values of k & t 
       amb(k,t)=temp;   
      end 
   end 
 
   [k, t]=find(amb==max(max(amb)));  % Find the peak of the CAF matrix 
 
 
   TDOA = tau_val(t); % TDOA and FDOA associated with the peak of the 
   FDOA = k_val(k);  % CAF plane.  These represent the final TDOA  
          % & FDOA estimates. 
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   % The results are displayed.                         
   disp(' ');disp(' ');disp(' '); 
   disp(['The TDOA is ', num2str(TDOA/multiple), ' samples']); 
   disp(['         or ', num2str(TDOA/(multiple*fs)), ' seconds.']); 
   disp(' '); 
   disp(['The resolution is ', num2str(0.5/... 
                   (multiple*fs)),' seconds.']); 
   disp(' ');disp(' '); 
 
   disp(['The FDOA is ', num2str(FDOA/N),... 
                ' in digital frequency (k/N)']); 
   disp(['         or ', num2str(FDOA/N*fs), ' Hz.']); disp(' '); 
   disp(['The resolution is ', num2str(0.5*... 
                   (10^decimal)/N*fs), ' Hz.']); 
   disp(' ');disp(' ');disp(' '); 
    
    
   % If the signal length exceeds 524288 elements, max processing 
   % capability has been achieved, and the user will not be given 
   % the option of refining TDOA any further. 
   if Ntemp >= 2^19 
      disp('Maximum TDOA processing capability has been achieved.') 
      doneT = 1; 
   else doneT = 0; 
   end 
    
   % User chooses whether to compute more accurate TDOA &/or 
   % FDOA, or to stop fine mode computations. 
   disp('Do you desire a solution with finer resolution?'); 
   disp('Select one of the following:'); disp(' '); 
    
   if ~doneT 
      disp('1.  Finer resolution for TDOA.'); 
   else disp(' '); 
   end 
    
   disp('2.  Finer resolution for FDOA.'); 
    
   if ~doneT 
      disp('3.  Finer resolution for both TDOA and FDOA.'); 
   else disp(' '); 
   end 
    
   disp('4.  The TDOA and FDOA resolutions are fine enough.'); 
   disp(' '); 
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   choice = input('What is your selection?  '); 
    
   switch choice 
       
   % TDOA is refined by resampling the signals at twice the 
   % previous sampling rate.  Increases resolution two-fold. 
   case 1 
      if ~doneT 
         multiple = multiple*2; 
    S1 = interp(S1, 2); 
       S2 = interp(S2, 2); 
         tau_val = TDOA*2 - 1 : TDOA*2 + 1; 
      else done = 1; 
      end 
      clc; 
       
   % FDOA resolution is improved by a factor of 10. 
   case 2 
      decimal = decimal - 1; 
      k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + 5*10^decimal; 
      clc; 
       
   % Both TDOA and FDOA resolutions are improved. 
   case 3 
      if ~doneT 
         multiple = multiple*2; 
    S1 = interp(S1, 2); 
       S2 = interp(S2, 2); 
         tau_val = TDOA*2 - 1 : TDOA*2 + 1; 
       
         decimal = decimal - 1; 
         k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + ... 
                          5*10^decimal; 
      else done = 1; 
      end 
      clc; 
   otherwise 
      done = 1; 
   end 
    
   if done 
      disp(' ');disp(' '); disp('TDOA & FDOA estimation complete.'); 
   end 
end 
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% If user wants to see the CAF surface graphically, a call to 
% CAF_peak is made. 
disp(' ');%disp(' ');disp(' '); 
choice = input... 
   ('Would you like to see the CAF peak graphically (Y or N)?  ','s'); 
choice = upper(choice); 
 
switch choice 
case 'Y' 
   caf_peak(S1_orig, S2_orig, floor(TDOA/multiple) - 50, ... 
      floor(TDOA/multiple) + 50, (FDOA-20)/N, (FDOA+20)/N, fs); 
end 
 
 
TDOA = TDOA/(multiple*fs);   % Returns TDOA in seconds. 
FDOA = FDOA/N*fs;      % Returns FDOA in Hertz. 
disp('Program Complete.');    

 

 

B. “CAF_PEAK.M” 
function [TDOA, FDOA, MaxAmb, Amb] = ... 
       CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, fs); 
 
% ********************************************************************* 
% CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi) takes as input:  
%   two signals (S1, S2) that are row or column vectors; a range of  
%   time delays (in samples) to search (Tau_Lo, Tau_Hi must be  
%   integers between -N & +N); a range of digital frequencies (in  
%   fractions of sampling frequency) to search (Freq_Lo, Freq_Hi must  
%   be between -1/2 and 1/2, or -(N/2)/N and (N/2)/N, where N is the  
%   length of the longer of the two signal vectors); and the sampling 
%   frequency, fs. 
% 
%   The function computes the Cross Ambiguity Function of the two  
%   signals. Four plots are produced which represent four different  
%   views of the Cross Ambiguity Function magnitude versus the input 
%   Tau and Frequency Offset ranges. 
% 
%   The function returns the scalars TDOA, FDOA, and MaxAmb, where  
%   TDOA & FDOA are the values of Time Delay and Frequency Offset  
%   that cause the Cross Ambiguity Function to peak at a magnitude  
%   of MaxAmb.  Amb is the matrix of values representing the CAF 
%   surface. 
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% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  26 August 2001 
% ********************************************************************* 
 
 
% Ensures that the user enters all SIX required arguments. 
if (nargin < 6)  
   error... 
   ('6 arguments required: S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi'); 
end 
 
% Ensures that both S1 & S2 are row- or column-wise vectors. 
if ((size(S1,1)~=1)&(size(S1,2)~=1)) | ((size(S2,1)~=1)&... 
                  (size(S2,2)~=1)) 
   error('S1 and S2 must be row or column vectors.'); 
end 
 
N1 = length(S1); 
N2 = length(S2); 
S1 = reshape(S1,N1,1);  % S1 & S2 are reshaped into column-wise 
S2 = reshape(S2,N2,1);  % vectors since MATLAB is more efficient 
        % when manipulating columns. 
 
S1 = [S1;zeros(N2-N1,1)]; % Ensure that S1 & S2 are the same size,  
S2 = [S2;zeros(N1-N2,1)]; % padding the smaller one w/ 0s as neeeded. 
 
 
% This WHILE loop simply ensures that the length of S1 & S2 is a power 
% of two.  If not, the vectors are padded with 0s until their length  
% is a power of two.  This is not required, but it takes advantage of  
% the fact that MATLAB's FFT computation is significantly faster for  
% lengths which are powers of two! 
while log(length(S1))/log(2) ~= round(log(length(S1))/log(2)) 
   S1(length(S1)+1) = 0; 
   S2(length(S2)+1) = 0; 
end 
    
N = length(S1); 
 
% Ensures that the Tau values entered are in the valid range. 
if abs(Tau_Lo)>N | abs(Tau_Hi)>N 
   error('Tau_Lo and Tau_Hi must be in the range -N to +N.'); 
end 
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% Ensures that Tau values entered by the user are integers. 
if (Tau_Lo ~= round(Tau_Lo)) | (Tau_Hi ~= round(Tau_Hi)) 
   error('Tau_Lo and Tau_Hi must be integers.') 
end 
 
% Ensures that the Frequency values entered are in the valid range. 
if abs(Freq_Lo)>1/2 | abs(Freq_Hi)>1/2 
   error('Freq_Lo and Freq_Hi must be in the range -.5 to +.5'); 
end 
 
% Ensures that the lower bounds are less than the upper bounds. 
if (Tau_Lo > Tau_Hi) | (Freq_Lo > Freq_Hi) 
   error('Lower bounds must be less than upper bounds.') 
end 
 
% Freq values converted into integers for processing. 
Freq_Lo = round(Freq_Lo*N); 
Freq_Hi = round(Freq_Hi*N); 
 
% Creates vectors for the Tau & Freq values entered by the user. Used  
% for plotting... 
TauValues = [Tau_Lo:Tau_Hi];  
FreqValues = [Freq_Lo:Freq_Hi]/N; 
 
% The IF statement calculates the indices required to isolate the  
% user-defined frequencies from the FFT calculations below. 
if Freq_Lo < 0 & Freq_Hi < 0 
   Neg_Freq = (N+Freq_Lo+1:N+Freq_Hi+1); 
   Pos_Freq = []; 
elseif Freq_Lo < 0 & Freq_Hi >= 0 
   Neg_Freq = (N+Freq_Lo+1:N); 
   Pos_Freq = (1:Freq_Hi+1); 
else 
   Neg_Freq = []; 
   Pos_Freq = (Freq_Lo+1:Freq_Hi+1); 
end 
 
 
% This FOR loop actually calculates the Cross Ambiguity Function for  
% the given range of Taus and Frequencies.  Note that an FFT is  
% performed for each Tau value and then the frequencies of interest  
% are isolated using the Neg_Freq and Pos_Freq vectors obtained above. 
% For each value of Tau, the vector S2 is shifted Tau samples using a 
% call to the separate function "SHIFTUD".  Samples shifted out are  
% deleted and zeros fill in on the opposite end. 
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% Initializing Amb with 0s makes computations much faster. 
Amb=zeros(length(Neg_Freq)+length(Pos_Freq),length(TauValues)); 
for t = 1:length(TauValues)  
   temp = fft((S1).*conj(shiftud(S2,TauValues(t),0))); 
   Amb(:,t) = [temp(Neg_Freq);temp(Pos_Freq)];    
end 
 
% Only interested in the Magnitude of the Cross Ambiguity Function. 
Amb = abs(Amb);  
 
 
% The following will remove any spike that occurs at Tau = FreqOff = 0. 
% This may be desired in some cases, especially when the spike at (0,0) 
% is due to correlation of the two signals' noise components.  The  
% spike, of course, could also indicate that the two signals have no  
% TDOA or FDOA between them. 
 
% if find(TauValues == 0) & find(FreqValues == 0) 
%   Amb(find(FreqValues==0),find(TauValues==0)) = 0;  
% end 
 
%clc;    %Clears the MATLAB command window. 
% The four different views of the Cross Ambiguity Function plots are 
% created here. 
 
figure  % This one is the 3-D view 
mesh(TauValues/fs,FreqValues*fs,Amb); 
 xlabel('TDOA (Seconds)');ylabel('FDOA (Hertz)'); 
 zlabel('Magnitude'); 
      title('Cross Ambiguity Function'); 
    
figure   
subplot(2,1,1)    % This one is the 2-D view along the TDOA axis 
mesh(TauValues/fs,FreqValues*fs,Amb); 
 xlabel('TDOA (Seconds)'); 
 zlabel('Magnitude');  
      view(0,0); 
    
subplot(2,1,2)    % This one is the 2-D view along the FDOA axis 
mesh(TauValues/fs,FreqValues*fs,Amb); 
 ylabel('FDOA (Hertz)');  
 zlabel('Magnitude'); 
      view(90,0); 
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%This one is a 2-D view looking down on the plane 
figure 
mesh(TauValues/fs,FreqValues*fs,Amb);   
 xlabel('TDOA (Seconds)');ylabel('FDOA (Hertz)'); 
 zlabel('Magnitude'); 
      title('Cross Ambiguity Function'); 
      view(0,90); 
    
    
% Finds the indices of the peak value. 
[DFO, DTO] = find(Amb==max(max(Amb)));   
 
TDOA = TauValues(DTO);  % Finds the actual value of the TDOA. 
FDOA = FreqValues(DFO);  % Finds the actual value of the FDOA. 
MaxAmb = max(max(Amb));  % Finds the actual Magnitude of the peak. 
 
 
% The remaining lines will display the numerical results of the  
% TDOA & FDOA, if desired.  Since the FFT method was used for the 
% calculations, the TDOA is accurate only to within +/- 0.5 samples,  
% and the FDOA is accurate to within +/- 0.5/N in digital frequency. 
 
% disp(' '); disp(' '); 
% disp(['The TIME LAG (TDOA) is:  ',num2str(TDOA),' Samples.']);  
% disp(' '); 
% disp(['The FREQ OFFSET (FDOA) is:  ',num2str(FDOA),... 
%      ' (Fraction of Fs).']); 
% disp(' '); disp(['Maximum Magnitude = ',num2str(MaxAmb)]); 
% disp(' ');disp('-----------------------------'); 
% disp('NOTE:  If the CAF plot has secondary peaks whose magnitudes'); 
% disp('       are within about 80% of the Main Peak''s magnitude,'); 
% disp('       then the above results may be unreliable.  Likely'); 
% disp('       reasons: The true peak is not within the range of,'); 
% disp('     Taus & Freq Offsets that you entered or the signals'); 
% disp('       may be too noisy to detect the peak.'); 

 

 

C. “SHIFTUD.M” 
function y=shiftud(a,n,cs) 
 
% ********************************************************************* 
% SHIFTUD Shift or Circularly Shift Matrix Rows 
% SHIFTUD(A,N) with N<0 shifts the rows of A DOWN N rows. 
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% The first N rows are replaced by zeros and the last N 
% rows of A are deleted. 
% 
% SHIFTUD(A,N) with N>0 shifts the rows of A UP N rows. 
% The last N rows are replaced by zeros and the first N 
% rows of A are deleted. 
% 
% SHIFTUD(A,N,C) where C is nonzero performs a circular 
% shift of N rows, where rows circle back to the other 
% side of the matrix.  No rows are replaced by zeros. 
% 
% Copyright (c) 1996 by Prentice-Hall, Inc. – Reference [9] 
% ********************************************************************* 
 
if nargin<3, cs=0; end  % If no third argument, default is False 
cs=cs(1);       % Make sure third argument is a scalar 
[r,c]=size(a);      % Get dimensions of input 
dn=(n<=0);    % dn is True if shift is down 
n=min(abs(n),r);     % Limit shift to less than rows 
 
if n==0|(cs&n==r)        % Simple no shift case 
   y=a; 
elseif ~cs&dn         % No circular and down 
   y=[zeros(n,c); a(1:r-n,:)]; 
elseif ~cs&~dn        % No circular and up 
   y=[a(n+1:r,:); zeros(n,c)]; 
elseif cs&dn         % Circular and down 
   y=[a(r-n+1:r,:); a(1:r-n,:)]; 
elseif cs&~dn         % Circular and up 
   y=[a(n+1:r,:); a(1:n,:)]; 
end 
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APPENDIX B:  MATLAB CODE – SIGNAL GENERATION 
SOFTWARE 

 

A. “SIG_GEN.M” 
function [Sa1, Sa2, S1, S2] = sig_gen; 
 
% ********************************************************************* 
% SIG_GEN generates BPSK signal pairs based upon user-defined param- 
%       eters and Cartesian emitter-collector geometries.  There are 
%       no input arguments, since the function queries the user for 
%       all required inputs.  The function returns four vectors: 
%       Sa1, Sa2, S1 & S2.  These are the Analytic Signal represen- 
%       tations of the two generated signals, and the Real represen- 
%       tations of the two signals, respectively. 
% 
% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  26 August 2001 
 
% ********************************************************************* 
 
clc; 
disp(' '); 
disp('All positions and velocites must be entered in vector format,'); 
disp('e.g., [X Y Z] or [X, Y, Z] (including the brackets).'); 
disp(' '); 
 
Pc1(1,:) = input... 
     ('Collector 1''s POSITION Vector at time 0 (in meters)?  '); 
Vc1 = input('Collector 1''s VELOCITY Vector (in m/s)?  '); disp(' '); 
 
Pc2(1,:) = input... 
     ('Collector 2''s POSITION Vector at time 0 (in meters)?  '); 
Vc2 = input('Collector 2''s VELOCITY Vector (in m/s)?  '); disp(' '); 
 
Pe(1,:) = input... 
       ('Emitter''s POSITION Vector at time 0 (in meters)?  '); 
Ve = input('Emitter''s VELOCITY Vector (in m/s)?  '); disp(' '); 
 
% f0 and fs are the same for BOTH collectors! 
f0 = input('Carrier Frequency (in Hz)?  '); 
fs = input('Sampling Frequency (in Hz)?  '); 
Ts = 1/fs;        % Calculates Sample Period 
 
Rsym = input('Symbol Rate (in symbols/s)?  '); disp(' '); 
Tsym = 1/Rsym;      % Calculates Symbol Period 
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N = input('How many samples?  '); disp(' '); 
 
Es_No1 = input('Desired Es/No at Collector 1 (in dB)?  '); 
Es_No1 = 10^(Es_No1/10);   % Converts from dB to ratio 
 
Es_No2 = input('Desired Es/No at Collector 2 (in dB)?  ');  
disp(' '); 
Es_No2 = 10^(Es_No2/10);   % Converts from dB to ratio 
 
 
Pc1 = [Pc1; zeros(N-1, 3)];  % Initializing all the matrices makes 
Pe1 = zeros(N, 3);     % later computations much faster. 
Pc2 = [Pc2; zeros(N-1, 3)]; 
Pe2 = zeros(N, 3); 
t1 = zeros(1, N); 
t2 = zeros(1, N); 
S1 = zeros(1, N); 
S2 = zeros(1, N); 
 
A = 1;      % Amplitude of Signal 
c = 2.997925e8;  % Speed of light in m/s 
Ps = (A^2)/2;   % Power of Signal 
 
sigma1 = sqrt(Ps*Tsym/Es_No1); % Calculate Noise Amplification fac- 
sigma2 = sqrt(Ps*Tsym/Es_No2); % tors using Es/No = Ps*Tsym/sigma^2 
 
Noise1 = sigma1.*randn(N, 1);  % Random Noise values for Signal 1 
Noise2 = sigma2.*randn(N, 1);  % Random Noise values for Signal 2 
 
 
% Builds the position vectors for the two collectors 
for index = 2 : N      
   Pc1(index,:) = Pc1(index - 1,:) + Ts*Vc1; 
   Pc2(index,:) = Pc2(index - 1,:) + Ts*Vc2; 
end 
 
 
% While loop determines first elements of Pe1 and t1.  t1(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 1!  Pe1(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 1. 
 
temp = inf;   % Ensures while loop executes at least once 
t1(1) = 0; 
tempPe = Pe(1,:); 
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while abs(temp - t1(1)) > 1/f0   
   temp = t1(1); 
   t1(1) = -norm(Pc1(1,:) - tempPe) / c;  
   tempPe = Pe(1,:) + t1(1)*Ve;     
end              
Pe1(1,:) = tempPe;   
 
 
% While loop determines first elements of Pe2 and t2.  t2(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 2!  Pe2(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 2. 
 
temp = inf;   % Ensures while loop executes at least once 
t2(1) = 0; 
tempPe = Pe(1,:); 
while abs(temp - t2(1)) > 1/f0   
   temp = t2(1); 
   t2(1) = -norm(Pc2(1,:) - tempPe) / c;  
   tempPe = Pe(1,:) + t2(1)*Ve;     
end              
Pe2(1,:) = tempPe;   
 
 
% Determines the earliest time at the emitter for this pair of signals. 
StartPoint = min(t1(1), t2(1));   
 
 
% Next 2 lines determine offsets needed for signals 1 & 2 to enter the 
% phase vector (P).  This simply ensures proper line up so that bit  
% changes occur at the right times. 
SymbolIndex1 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t1(1)>t2(1));   
SymbolIndex2 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t2(1)>t1(1)); 
 
 
for index = 2 : N     % Builds the Pe1 and t1 vectors 
   temp = inf;    
   t1(index) = 0; 
    
   % 1st guess is that emitter will advance exactly Ts seconds. 
   tempPe = Pe1(1,:) + (t1(index -1) + Ts)*Ve;  
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   % While loop iteratively determines actual time & position for  
   % emitter, based on instantaneous geometry. 
   while abs(temp - t1(index)) > 1/f0     
      temp = t1(index);         
      t1(index) = (index - 1)*Ts - norm(Pc1(index,:) - tempPe) / c; 
       
      % Due to negative times, must multiply Ve by ELAPSED time! 
    tempPe = Pe1(1,:) + abs(t1(1)-t1(index))*Ve;   
   end                 
   Pe1(index,:) = tempPe; 
end 
 
 
for index = 2 : N     % Builds the Pe2 and t2 vectors 
   temp = inf;    
   t2(index) = 0; 
    
   % 1st guess is that emitter will advance exactly Ts seconds. 
   tempPe = Pe2(1,:) + (t2(index -1) + Ts)*Ve;  
    
   % While loop iteratively determines actual time & position for  
   % emitter, based on instantaneous geometry. 
   while abs(temp - t2(index)) > 1/f0     
      temp = t2(index);          
    t2(index) = (index - 1)*Ts - norm(Pc2(index,:) - tempPe) / c; 
       
      % Due to negative times, must multiply Ve by ELAPSED time! 
      tempPe = Pe2(1,:) + abs(t2(1)-t2(index))*Ve;    
   end 
   Pe2(index,:) = tempPe; 
end 
 
 
 
% Could change this seed to whatever you want; or could have user  
% define it as an input.  This just ensures, for simulation purposes 
% that every time the program is run, the BPSK signals created will 
% have the same random set of data bits. 
rand('seed',5);                  
                   
% Create enough random #'s to figure phase shift (data bits) 
r = rand(N,1);    
P = (r > 0.5)*0 + (r <= 0.5)*1;     % Since BPSK, random # determines 
         % if phase is 0 or pi  
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% Building Xmitted Signal #1 vector...  These represent the pieces of 
% the signal that were transmitted by the emitter to arrive at  
% Collector 1 at its sample intervals. 
                                     
S1(1) = A*cos(2*pi*f0*t1(1) + P(SymbolIndex1)*pi) + Noise1(1); 
 
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
   if t1(index) - StartPoint >= (SymbolIndex1) * Tsym   
      SymbolIndex1 = SymbolIndex1 + 1; 
   end 
   S1(index) = A*cos(2*pi*f0*t1(index) + P(SymbolIndex1)*pi) + ... 
         Noise1(index); 
end 
 
Sa1 = hilbert(S1); % Calculates the ANALYTIC SIGNAL of S1.  To  
     % compute the COMPLEX ENVELOPE, multiply Sa1 
     % by .*exp(-j*2*pi*f0.*t1); 
 
 
 
% Building Xmitted Signal #2 vector...  These represent the pieces of 
% the signal that were transmitted by the emitter to arrive at  
% Collector 2 at its sample intervals. 
 
S2(1) = A*cos(2*pi*f0*t2(1) + P(SymbolIndex2)*pi) + Noise2(1); 
 
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
   if t2(index) - StartPoint >= (SymbolIndex2) * Tsym  
      SymbolIndex2 = SymbolIndex2 + 1; 
   end 
   S2(index) = A*cos(2*pi*f0*t2(index) + P(SymbolIndex2)*pi) + ... 
         Noise2(index); 
end 
 
Sa2 = hilbert(S2); % Calculates the ANALYTIC SIGNAL of S2.  To  
     % compute the COMPLEX ENVELOPE, multiply Sa2 
     % by .*exp(-j*2*pi*f0.*t2); 
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% This function call simply calculates and displays the expected TDOAs 
% and FDOAs at the Beginning and End of the collection time. 
 
tdoa_fdoa(f0,Pe1(1,:),Pe1(N,:),Pe2(1,:),Pe2(N,:),Ve,Pc1(1,:),... 

      Pc1(N,:),Vc1,Pc2(1,:),Pc2(N,:),Vc2); 

 

 
B. “TDOA_FDOA.M” 
function [TDOA_b, TDOA_e, FDOA_b, FDOA_e] = tdoa_fdoa(f0,Pe1_b,... 
       Pe1_e,Pe2_b,Pe2_e,Ve, Pc1_b,Pc1_e,Vc1,Pc2_b,Pc2_e,Vc2) 
 
% ********************************************************************* 
% TDOA_FDOA is for use with SIG_GEN.m in helping to determine what the 
%          expected TDOA and FDOA are for two signal vectors. 
% 
% The function takes the following input arguments: 
% 
%         f0 -- carrier frequency (assumed to be equal for both signals) 
%  Pe1_b -- [X Y Z] Emitter position WRT Collector 1 at 1st sample 
%  Pe1_e -- [X Y Z] Emitter position WRT Collector 1 at last sample 
%  Pe2_b -- [X Y Z] Emitter position WRT Collector 2 at 1st sample 
%  Pe2_e -- [X Y Z] Emitter position WRT Collector 2 at last sample 
%       Ve -- [X Y Z] Emitter velocity 
%  Pc1_b -- [X Y Z] Collector 1 position at 1st sample 
%  Pc1_e -- [X Y Z] Collector 1 position at last sample 
%     Vc1 -- [X Y Z] Collector 1 velocity 
%  Pc2_b -- [X Y Z] Collector 2 position at 1st sample 
%  Pc2_e -- [X Y Z] Collector 2 postion at last sample 
%     Vc2 -- [X Y Z] Collector 2 velocity 
% 
% The output variables are the TDOA at the beginning, TDOA at the  
% end, FDOA at the beginning, and FDOA at the end, respectively. 
 
% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  26 August 2001 
% ********************************************************************* 
 
c = 2.997925e8;   % Speed of light 
 
% The next two lines calculate the Doppler shifts between the emitter  
% and Collector 1 & Collector 2, respectively, at the BEGINNING of the 
% collection (i.e., at the instant of the first sample). 
 
doppler1_b = f0/c * dot(Ve-Vc1, Pe1_b-Pc1_b) / norm(Pe1_b - Pc1_b); 
doppler2_b = f0/c * dot(Ve-Vc2, Pe2_b-Pc2_b) / norm(Pe2_b - Pc2_b); 
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% Calculates the FDOA at the BEGINNING of collection time. 
 
FDOA_b = doppler1_b - doppler2_b; 
 
 
% Calculates Doppler shifts between emitter and each collector at the 
% END of the collection time (i.e., at instant of the last sample). 
doppler1_e = f0/c * dot(Ve-Vc1, Pe1_e-Pc1_e) / norm(Pe1_e - Pc1_e); 
doppler2_e = f0/c * dot(Ve-Vc2, Pe2_e-Pc2_e) / norm(Pe2_e - Pc2_e); 
 
% Calculates the FDOA at the END of collection time 
FDOA_e = doppler1_e - doppler2_e; 
 
 
% Calculates the TDOA between the two collectors at the BEGINNING  
% and END of collection time. 
 
TDOA_b = (norm(Pe2_b - Pc2_b) - norm(Pe1_b - Pc1_b)) / c; 
TDOA_e = (norm(Pe2_e - Pc2_e) - norm(Pe1_e - Pc1_e)) / c; 
 
 
% Displays the results in the command window. 
 
disp(' ');disp(' ');disp(' '); 
disp(['At the START of the Collection, TDOA = ',num2str(TDOA_b),... 
      ' seconds.']); 
disp(['                                FDOA = ',num2str(FDOA_b),... 
      ' Hertz.']); 
 
disp(' ');disp(' '); 
disp(['At the END of the Collection, TDOA = ',num2str(TDOA_e),... 
      ' seconds.']); 
disp(['                              FDOA = ',num2str(FDOA_e),... 
      ' Hertz.']);
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